首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrafast dynamics, including the intermolecular vibrations and the diffusive orientational dynamics, of the neat C(s) symmetry condensed ring aromatic molecular liquids benzofuran, 1-fluoronaphtalene, and quinoline were investigated for the first time by means of femtosecond Raman-induced Kerr effect spectroscopy. To understand the features of these C(s) condensed ring aromatic molecular liquids, reference singular aromatic molecular liquids, furan, fluorobenzene, pyridine, and benzene, were also studied. High quality low-frequency Kerr spectra of the aromatic molecular liquids were obtained by Fourier-transform deconvolution analysis of the measured Kerr transients. The Kerr spectra of the C(s) condensed ring aromatic molecular liquids are bimodal, as are those of the reference singular aromatic molecular liquids. The first moment of the intermolecular vibrational spectrum and the peak frequencies of the high- and low-frequency components in the broad spectrum band were compared with their molecular properties such as the rotational constants, molecular weight, and intermolecular (bimolecular) force. The comparisons show that the molecular volume (related to molecular weight and rotational constants) is a dominant property for the characteristic frequency of the entire intermolecular vibrational spectrum. The observed intramolecular vibrational modes in the Kerr spectra of the aromatic molecular liquids were also assigned on the basis of the ab initio quantum chemical calculation results. In their picosecond diffusive orientational dynamics, the slowest relaxation time constant for both the condensed ring and singular aromatic molecular liquids can be accounted for by the simple Stokes-Einstein-Debye hydrodynamic model.  相似文献   

2.
The rotational spectra of the three symmetric top molecules of the title have been measured and the rotational constants determined. The latter are in agreement with those obtained from chemically reasonable molecular models. The spectrum of bullvalene shows an interesting vibrational structure.  相似文献   

3.
The rotational spectrum of 1-benzofuran has been investigated by three different rotational spectroscopy techniques: (i) millimeterwave absorption free jet spectroscopy, useful for a fast assignment of the spectrum; (ii) molecular beam Fourier transform microwave spectroscopy, sensitive to detect less abundant isotopic species in natural abundance; (iii) waveguide conventional microwave spectroscopy, useful for the study of intramolecular dynamics, through the rotational spectra of the vibrational satellites of low energy modes. Besides the rotational spectrum of the ground state of the normal species, the spectra of 9 singly substituted 13C and 18O isotopomers in natural abundance, and of 6 vibrational satellites, have been measured. Precise structural parameters for the molecule, as well as information on the potential energy surface of the low energy vibrations, have been obtained. The dipole moment components have been determined to be micro(a)= 0.216 (2) and micro(b)= 0.720 (3) D, respectively.  相似文献   

4.
Polar ordering has been induced by pressure in solid chloroform (trichloromethane), CHCl3, and bromoform (tribromomethane), CHBr3, obtained by isochoric and isothermal freezing in a diamond anvil cell. Structures of these new polymorphs have been determined by single-crystal X-ray diffraction, CHCl3 at 0.62 and 0.75 GPa and CHBr3 at 0.20 and 0.35 GPa. Despite different centrosymmetric structures of all low-temperature phases of CHCl3 (space group Pbcn) and CHBr3 (P6(3)/m, P1, and P3), the high-pressure phases are isostructural in space group P6(3). The polar phase of CHBr3 is formed at 295 K, already at the freezing pressure of approximately 0.1 GPa, while CHCl3 transforms from the Pbcn phase into the P6(3) phase between 0.62 and 0.75 GPa. It has been demonstrated that the electrostatic contribution to halogen...halogen and H...halogen interactions in the CHCl3 and CHBr3 molecular crystals is favorable for the polar aggregation and that this effect intensifies with increasing pressure.  相似文献   

5.
In this study we present the results of the molecular dynamics simulation of the ionic liquids: 1-butyl-3-methyl-imidazolium tetrafluoroborate and trifluoromethylacetate as well as 1-ethyl-3-methyl-imidazolium dicyanamide. Ionic liquids are characterized by both a molecular dipole moment and a net charge. Thus, in contrast to a solution of simple ions in a (non-) polar solvent, rotational and translational effects influence the very same molecule. This study works out the theoretical framework necessary to compute the conductivity spectrum and its low frequency limit of ionic liquids. Merging these computed conductivity spectra with previous simulation results on the dielectric spectra of ionic liquids yields the spectrum of the generalized dielectric constant, which may be compared to experiments. This spectrum was calculated for the three ionic liquids over six orders of magnitude in frequency ranging from 10 MHz to 50 THz. The role of rotation and translation and their coupling term on the generalized dielectric constant is discussed in detail with a special emphasis on the zero-frequency limit. Thereby, the frequency dependence of the cross correlation between the collective rotational dipole moment and the current is discussed.  相似文献   

6.
The dynamics of the 193 nm photodissociation of the CFCl and CFBr molecules have been investigated in a molecular beam experiment. The CFCl and CFBr parent molecules were generated by pyrolysis of CHFCl2 and CFBr3, respectively, and the CFCl and the CF photofragment were detected by laser fluorescence excitation. The 193 nm attenuation cross section of CFCl was determined from the reduction of the CF photofragment signal as a function of the photolysis laser fluence. The internal state distribution was derived from the analysis of laser fluorescence excitation spectra in the A 2Sigma+-X 2Pi band system. A very low degree of rotational excitation, with essentially equal A' and A" Lambda-doublet populations, and no vibrational excitation were found in the CF photofragment. The energy available to the photofragments is hence predominantly released as translational energy. The CF internal state distribution is consistent with the dissociation of a linear intermediate state. Considerations of CFCl electronic states suggest that a bent Rydberg state is initially excited.  相似文献   

7.
Pulsed slit-jet high resolution (up to 0.0009 cm(-1) FWHM) infrared diode laser spectra of CF(3)Br, with natural isotopic abundance, were obtained in the region around 9.2 microm at the rotational temperature of about 50 K. In addition, diode laser spectra at reduced temperature (200 K) were recorded. We present here the rovibrational analysis of the nu(1) fundamental in the range 1075-1090 cm(-1). The fine structure of many P(J) and R(J) clusters has been well resolved for the first time. The assignment of rovibrational transitions has been accomplished up to K = 27, J = 63 for CFBr and K = 33, J = 62 for CFBr. A total of 636 (CFBr) and 880 (CFBr) lines were used in the final fit and a very accurate set of molecular constants, including the quartic centrifugal distortion coefficients for the v(1) = 1 state of both the bromine isotopologues, was obtained. In addition, spectral features belonging to the nu(1) + nu(6)-nu(6) hot band were unambiguously identified and a set of spectroscopic parameters were determined.  相似文献   

8.
Theoretical analysis of the terahertz spectrum of the high explosive PETN.   总被引:2,自引:0,他引:2  
The experimental solid-state terahertz (THz) spectrum (3 to 120 cm(-1)) of the high explosive pentaerythritol tetranitrate (PETN, C(5)H(6)N(4)O(12)) has been modeled using solid-state density functional theory (DFT) calculations. Solid-state DFT, employing the BP density functional, is in best qualitative agreement with the features in the previously reported THz spectrum. The crystal environment of PETN includes numerous intermolecular hydrogen-bonding interactions that contribute to large (up to 80 cm(-1)) calculated shifts in molecular normal-mode positions in the solid state. Comparison of the isolated-molecule and solid-state normal-mode calculations for a series of density functionals reveals the extent to which the inclusion of crystal-packing interactions and the relative motions between molecules are required for correctly reproducing the vibrational structure of solid-state THz spectra. The THz structure below 120 cm(-1) is a combination of both intermolecular (relative rotations and translations) and intramolecular (torsions, large amplitude motions) vibrational motions. Vibrational-mode analyses indicate that the first major feature (67.2 cm(-1)) in the PETN THz spectrum contains all of the optical rotational and translational cell modes and no internal (molecular) vibrational modes.  相似文献   

9.
The synthesis and spectroscopic characterisation of the products obtained by treatment of N,N'-dimethylimidazolidine-2-thione (1), N,N'-dimethylimidazolidine-2-selone (2), N,N'-dimethylbenzoimidazole-2-thione (3) and N,N'-dimethylbenzoimidazole-2-selone (4) with Br2 in MeCN are reported, together with the crystal structures of the 10-E-3, T-shaped adducts 2 . Br2 (12), 3 . Br2 (13) and 4 . Br2 (14). A conductometric and spectrophotometric investigation into the reaction between 1-4 and Br2, carried out in MeCN, allows the equilibria involved in the formation of the isolated 10-E-3 (E = S, Se) hypervalent compounds to be hypothesised. In order to understand the reasons why S and Se donors can give different product types on treatment with Br2 and I2, DFT calculations have been carried out on 1-8, 19 and 20, and on their corresponding hypothetical [LEX]+ cations (L = organic framework; E = S, Se; X = Br, I), which are considered to be key intermediates in the formation of the different products. The results obtained in terms of NBO charge distribution on [LEX]+ species explain the different behaviour of 1-8, 19 and 20 in their reactions with Br2 and I2 fairly well. X-ray diffraction studies show 12-14 to have a T-shaped (10-E-3; E = S, Se) hypervalent chalcogen nature. They contain an almost linear Br-E-Br (E = S, Se) system roughly perpendicular to the average plane of the organic molecules. In 12, the Se atom of each adduct molecule has a short interaction with the Br(1) atom of an adjacent unit, such that the Se atom displays a roughly square planar coordination. The Se-Br distances are asymmetric [2.529(1) vs. 2.608(1) A], the shorter distance being that with the Br(1) atom involved in the short intermolecular contact. In contrast, in the molecular adducts 13 and 14, which lie on a two-fold crystallographic axis, the Br-E-Br system is symmetric and no short intermolecular interactions involving chalcogen and bromine atoms are observed. The adducts are arranged in parallel planes; this gives rise to a graphite-like stacking. The new crystalline modification of 10, obtained from acetonitrile solution, confirms the importance of short intermolecular contacts in determining the asymmetry of Br-E-Br (E = S, Se) and I-Se-I groups in hypervalent 10-E-3 compounds. The analogies in the conductometric and spectrophotometric titrations of 1 and 2-4 with Br2, together with the similarity of the vibrational spectra of 11-14, also imply a T-shaped nature for 11. The vibrational properties of the Br-E-Br (E = S, Se) systems resemble those of the Br3- and IBr2- anions: the Raman spectrum of a symmetric Br-E-Br group shows only one peak near 160 cm(-1), as found for symmetric Br3- and IBr2- anions, while asymmetric Br-E-Br groups also show an antisymmetric Br-E-Br mode at around 190 cm(-1), as observed for asymmetric Br3- and IBr2- ions. Therefore, simple IR and Raman measurements provide a useful tool for distinguishing between symmetric and asymmetric Br-E-Br groups, and hence allow predictions about the crystal packing of these hypervalent chalcogen compounds to be made when crystals of good quality are not available.  相似文献   

10.
The high-resolution far-infrared absorption spectrum of the gaseous molecular complex H(3)N-HCN is recorded by means of static gas-phase Fourier transform far-infrared spectroscopy at 247 K, using a synchrotron radiation source. The spectrum contains distinct rotational structures which are assigned to the intermolecular NH(3) libration band nu9(1) (nu(B)) of the pyramidal H(3)N-HCN complex. A rovibrational analysis based on a standard semirigid symmetric top molecule model yields the band origin of 260.03(10) cm(-1), together with values for the upper state rotational constant B' and the upper state quartic centrifugal distortion constants D'(J) and D'(JK). The values for the upper state spectroscopic constants indicate that the hydrogen bond in the H(3)N-HCN complex is destabilized by 5% and elongates by 0.010 A upon excitation of a quantum of libration of the hydrogen bond acceptor molecule.  相似文献   

11.
Multireference configuration interaction (MRCI) calculations of the lowest singlet X(1A') and triplet ?((3)A') states as well as the first excited singlet ?((1)A') state have been performed for a series of bromocarbenes: CHBr, CFBr, CClBr, CBr(2), and CIBr. The MRCI calculations were performed with correlation consistent basis sets of valence triple-ζ plus polarization quality, employing a full-valence active space of 18 electrons in 12 orbitals (12 and 9, respectively, for CHBr). Results obtained include equilibrium geometries and harmonic vibrational frequencies for each of the electronic states, along with ?((3)A') ← X((1)A') singlet-triplet gaps and ?((1)A') ← X((1)A') transition energies. Comparisons have been made with previous computational and experimental results where available. The MRCI calculations presented in this work provide a comprehensive series of results at a consistent high level of theory for all of the bromocarbenes.  相似文献   

12.
The vibrational structure of vinyl chloride cation, CH(2)CHCl+ (X(2)A' '), has been studied by vacuum ultraviolet (VUV) zero-kinetic energy (ZEKE) photoelectron spectroscopy. Among nine symmetric vibrational modes, the fundamental frequencies of six modes have been determined. The first overtone of the out-of-plane CH(2) twist vibrational mode has been also measured. In addition to these, the combination and overtone bands of the above vibrational modes about 4500 cm(-1) above the ground state have been observed in the ZEKE spectrum. The vibrational band intensities of the ZEKE spectrum can be described approximately by the Franck-Condon factors with harmonic approximation. The ZEKE spectrum has been assigned based on the harmonic frequencies and Franck-Condon factors from theoretical calculations. The ionization energy (IE) of CH(2)CHCl is determined as 80705.5 +/- 2.5 (cm(-1)) or 10.0062 +/- 0.0003 (eV).  相似文献   

13.
The FT-IR and FT-Raman vibrational spectra of 1,3-dichlorobenzene (1,3-DCB) have been recorded using Bruker IFS 66 V Spectrometer in the range 4000-100 cm(-1). A detailed vibrational spectral analysis has been carried out and assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry, vibrational frequencies, atomic charges, dipole moment, rotational constants and several thermodynamic parameters in the ground state were calculated using ab initio Hartree-Fock (HF) and DFT (B3LYP) methods with 6-31++G (d, p) and 6-311++G (d, p) basis sets. With the help of different scaling factors, the observed vibrational wave numbers in FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wave numbers in the expected range. The inductive effect of Chlorine atoms in the benzene molecule has also been investigated.  相似文献   

14.
We report the 364-nm negative ion photoelectron spectra of CHX(2)(-) and CDX(2)(-), where X = Cl, Br, and I. The pyramidal dihalomethyl anions undergo a large geometry change upon electron photodetachment to become nearly planar, resulting in multiple extended vibrational progressions in the photoelectron spectra. The normal mode analysis that successfully models photoelectron spectra when geometry changes are modest is unable to reproduce qualitatively the experimental data using physically reasonable parameters. Specifically, the harmonic normal mode analysis using Cartesian displacement coordinates results in much more C-H stretch excitation than is observed, leading to a simulated photoelectron spectrum that is much broader than that which is seen experimentally. A (2 + 1)-dimensional anharmonic coupled-mode analysis much better reproduces the observed vibrational structure. We obtain an estimate of the adiabatic electron affinity of each dihalomethyl radical studied. The electron affinity of CHCl(2) and CDCl(2) is 1.3(2) eV, of CHBr(2) and CDBr(2) is 1.9(2) eV, and of CHI(2) and CDI(2) is 1.9(2) eV. Analysis of the experimental spectra illustrates the limits of the conventional normal mode approach and shows the type of analysis required for substantial geometry changes when multiple modes are active upon photodetachment.  相似文献   

15.
The case of symmetric tops CH(3)X (X = Br, Cl, F, …) perturbed by non-polar diatoms Y(2) (Y = N(2), O(2), …) is analysed from the viewpoint of theoretical collisional broadening of their rotational lines observed in atmospheric spectra. A semi-classical approach involving an exponential representation of the scattering operator and exact trajectories governed by the isotropic potential is presented. For the first time the active molecule is strictly treated as a symmetric top and the atom-atom interactions are included in the intermolecular potential model. It is shown for the CH(3)Cl-O(2) system that these interactions contribute significantly to the line width for all values of the rotational quantum numbers J and K. Additional testing of modifications required in the semi-classical formalism for a correct application of the cumulant expansion is performed and it is shown that the use of the cumulant average on the rotational states of the perturbing molecule leads to entirely negligible effects for the not very strongly interacting CH(3)Cl-O(2) system. In order to check the theoretical predictions and to extend the scarce experimental data available in the literature to higher values of the rotational quantum numbers, new measurements of room-temperature O(2)-broadened CH(3)Cl rotational lines are carried out by a photomixing continuous-wave terahertz spectrometer. The experimental line widths extracted with a Voigt profile model demonstrate an excellent agreement with theoretical results up to very high J-values (J = 31, 37, 40, 45, 50).  相似文献   

16.
Ionization of bromomethanes (CH3Br, CH2Br2, and CHBr3) upon collision with metastable He*(2(3)S) atoms has been studied by means of collision-energy-resolved Penning ionization electron spectroscopy. Lone-pair (nBr) orbitals of Br4p characters have larger ionization cross sections than sigma(C-Br) orbitals. The collision-energy dependence of the partial ionization cross sections shows that the interaction potential between the molecule and the He*(2(3)S) atom is highly anisotropic around CH3Br or CH2Br2, while isotropic attractive interactions are found for CHBr3. Bands observed at electron energies of approximately 2 eV in the He*(2(3)S) Penning ionization electron spectra (PIES) of CH2Br2 and CHBr3 have no counterpart in ultraviolet (He I) photoionization spectra and theoretical (third-order algebraic diagrammatic construction) one-electron and shake-up ionization spectra. Energy analysis of the processes involved demonstrates that these bands and further bands overlapping with sigma(C-Br) or piCH2 levels are related to autoionization of dissociating (He+ - Br-) pairs. Similarly, a band at an electron energy of approximately 1 eV in the He*(2(3)S) PIES spectra of CH3Br has been ascribed to autoionizing Br** atoms released by dissociation of (unidentified) excited states of the target molecule. A further autoionization (S) band can be discerned at approximately 1 eV below the lone-pair nBr bands in the He*(2(3)S) PIES spectrum of CHBr3. This band has been ascribed to the decay of autoionizing Rydberg states of the target molecule (M**) into vibrationally excited states of the molecular ion. It was found that for this transition, the interaction potential that prevails in the entrance channel is merely attractive.  相似文献   

17.
We have measured the infrared (IR) vibrational spectrum for cis-dichloroethene (cis-ClCH[Double Bond]CHCl) in excited Rydberg states with the effective principal quantum numbers n(*)=9, 13, 17, 21, 28, and 55 using the vacuum ultraviolet-IR-photoinduced Rydberg ionization (VUV-IR-PIRI) scheme. Although the IR frequencies observed for the vibrational bands nu(11) (*) (asymmetric C-H stretch) and nu(12) (*) (symmetric C-H stretch) are essentially unchanged for different n(*) states, suggesting that the IR absorption predominantly involves the ion core and that the Rydberg electron behaves as a spectator; the intensity ratio for the nu(11) (*) and nu(12) (*) bands [R(nu(11) (*)nu(12) (*))] is found to decrease smoothly as n(*) is increased. This trend is consistent with the results of a model ab initio quantum calculation of R(nu(11) (*)nu(12) (*)) for excited cis-ClCH[Double Bond]CHCl in n(*)=3-18 states and the MP26-311++G(2df,p) calculations of R(nu(11)nu(12)) and R(nu(11) (+)nu(12) (+)), where R(nu(11)nu(12))[R(nu(11) (+)nu(12) (+))] represents the intensity ratio of the nu(11)(nu(11) (+)) asymmetric C-H stretching to the nu(12)(nu(12) (+)) symmetric C-H stretching vibrational bands for cis-ClCH[Double Bond]CHCl (cis-ClCH[Double Bond]CHCl(+)). We have also measured the IR-VUV-photoion (IR-VUV-PI) and IR-VUV-pulsed field ionization-photoelectron depletion (IR-VUV-PFI-PED) spectra for cis-ClCH[Double Bond]CHCl. These spectra are consistent with ab initio calculations, indicating that the IR absorption cross section for the nu(12) band is negligibly small compared to that for the nu(11) band. While the VUV-IR-PIRI measurements have allowed the determination of nu(11) (+)=3067+/-2 cm(-1), nu(12) (+)=3090+/-2 cm(-1), and R(nu(11) (+)nu(12) (+)) approximately 1.3 for cis-ClCH=CHCl(+), the IR-VUV-PI and IR-VUV-PFI-PED measurements have provided the value nu(11)=3088.5+/-0.2 cm(-1) for cis-ClCH=CHCl.  相似文献   

18.
We present the basic principles of dynamic rotational spectroscopy for the highly vibrationally excited symmetric top molecule trifluoropropyne (TFP,CF3CCH). Single molecular eigenstate rotational spectra of TFP were recorded in the region of the first overtone of the nu(1) acetylenic stretching mode at 6550 cm(-1) by infrared-pulsed microwave-Fourier transform microwave triple resonance spectroscopy. The average rotational constant (B) of the highly vibrationally mixed quantum states at 6550 cm(-1) is 2909.33 MHz, a value that is 40 MHz larger than the rotational constant expected for the unperturbed C-H stretch overtone (2869.39 MHz). The average rotational constant and rotational line shape of the molecular eigenstate rotational spectra are compared to the distribution of rotational constants expected for the ensemble of normal-mode vibrational states at 6550 cm(-1) that can interact by intramolecular vibrational energy redistribution (IVR). The normal-mode population distribution at 6550 cm(-1) can be described using a Boltzmann distribution with a microcanonical temperature of 1200 K. At this energy the rotational constant distribution in the normal-mode basis set is peaked at about 2910 MHz with a width of about 230 MHz. The distribution is slightly asymmetric with a tail to the high end. The experimentally measured dynamic rotational spectra are centered at the normal-mode distribution peak; however, the spectral width is significantly narrower (40 MHz) than normal-mode ensemble width (230 MHz). This reduction of the width, along with the Lorentzian shape of the eigenstate rotational spectra when compared to the Gaussian shape of the calculated ensemble distribution, illustrates the narrowing of the spectrum due to IVR exchange. The IVR exchange rate was determined to be 120 ps, about ten times faster than the rate at which energy is redistributed from the v=2 level of the acetylenic stretch.  相似文献   

19.
Spectra of ethylene dimers and trimers are studied in the ν(11) fundamental band region of C(2)D(4) (≈2200 cm(-1)) using a tuneable quantum cascade laser to probe a pulsed supersonic slit jet expansion. The dimer spectrum is that of a prolate symmetric top perpendicular band, with a distinctive appearance because the A rotational constant is almost exactly equal to six times the B constant. The analysis supports the previously determined cross-shaped dimer structure with D(2d) symmetry. An ethylene trimer has not previously been observed with rotational resolution. The spectrum is that of an oblate symmetric top parallel band. It leads to a proposed trimer structure which is barrel shaped and has C(3h) or C(3) symmetry, with the ethylene monomer C-C axes approximately aligned along the trimer symmetry axis.  相似文献   

20.
The strength of the chiral vibrational peaks in infrared-visible sum-frequency (SF) vibrational spectra from isotropic chiral liquids is proportional to the square of the corresponding antisymmetric Raman element. Under the Born-Oppenheimer adiabatic approximation with nonadiabatic corrections, the antisymmetric Raman tensor is much weaker than the symmetric counterpart, but becomes significantly stronger as the input frequency (or the sum-frequency in SF generation) approaches electronic resonance. We verify the theory with experimental results obtained from infrared-visible doubly resonant sum-frequency generation from an isotropic solution of chiral molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号