首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The bimetallic complex of Ni2Co(TTHA)·12H2O (TTHA = triethylene tetraminehexaacetic acid) was synthesized and characterized structurally and magnetically. The title complex crystallizes in the triclinic space group P ī with a = 0.7316(2), b = 0.8624(2), c = 1.5041(4) nm; α = 73.38(2), β = 83.97(2), γ = 70.50(2)°. The crystal structure is built up of [Ni2(TTHA)(H2O)2]2−, Co(H2O)62+ and water molecules. The variable magnetic measurement shows that there is strong antiferromagnetic interaction between two Ni(II) ions in [Ni2(TTHA) (H2O)2]2− with J Ni−Ni = −141.64 cm−1, g Ni = 2.21 and that the constant of spin-orbit coupling of Co(II) ion is −134.8 cm−1. __________ Translated from Acta Scientiarum Naturalium Universitatis Nankaiensis, 2007, 40(1): 6–10 [译自: 南开大学学报(自然科学版)]  相似文献   

2.
《Solid State Sciences》2001,3(5):581-586
A new monohydrate of lithium perrhenate LiReO4·H2O was prepared by dehydration of LiReO4·1.5H2O at room temperature. The single crystals of LiReO4·H2O were obtained by crystallisation from the isoamyl acetate solution of LiReO4·1.5H2O. The structure of monohydrate (a=5.6674(4), b=10.771(1), c=7.4738(7) Å, β=102.422(7)°, R1=0.0414, space group P21/a, Z=4) is built up from LiO3(H2O)2 trigonal bipyramids and ReO4 tetrahedra sharing common edges and corners inside the layers. The layers are connected together by hydrogen bonds. The relationships between the structures of sesquihydrate, monohydrate and anhydrous LiReO4 are discussed.  相似文献   

3.
4.
5.
6.
Conditions for the synthesis of the water-soluble lead thiosulfate complex Na6[Pb(S2O3)4] · 6H2O were determined. The complex synthesized was characterized by UV and IR spectroscopy and X-ray phase and thermal analyses. Thermolysis schemes were proposed on the basis of the IR and mass spectra of the thermal decomposition products.  相似文献   

7.
A novel compound, KBi(C6H4O7) · 3.5H2O (I), has been synthesized in the Bi(NO3)2-K3(HCit) system (HCit3? is an anion of citric acid C6H8O7) at a component ratio (n) of 8 in a water-glycerol mixture, and its crystal structure has been determined. The crystals are unstable in air. The crystals are triclinic: a = 7.462 Å, b = 10.064 Å, c = 17.582 Å, α = 100.27°, β = 99.31°, γ = 105.48°, V = 1221.2 Å3, Z = 2, space group $P\bar 1$ . In the structure of I, asymmetric binuclear fragments [Bi2(Cit4?)2(H2O)2]2? are linked through inversion centers into polymeric chain anions. Ions K+ and crystal water molecules are arranged in channels between the chains. The Bi(1)...Bi(2) distances in the binuclear fragment are 4.62 Å, and the Bi(1)...Bi(1) and Bi(2)...Bi(2) distances between bismuth atoms in the chain are 5.83 and 5.95 Å, respectively. The chains are linked through bridging oxygen atoms of the ligands Cit to form layers. In the centrosymmetric four-membered chelate ring Bi2O2 formed through Bi-O(Cit) bonds, the distances Bi(1)-Bi(1) are equal to 4.55 Å, and Bi(1)-O are 2.66 and 2.84 Å. The Bi-O bond lengths in I are in the range 2.12–3.16 Å. The Cit ligands act as hexadentate chelating/bridging ligands.  相似文献   

8.
A new one-dimensional coordination polymer [Ni(phth)(phen)(H2O)] n ?·?nH2O was synthesized. The structure was determined by X-ray crystallography revealing that each nickel atom is five-coordinate bridged via phthalate ion to form a zigzag chain. The chains are further linked together via hydrogen-bonding interactions to construct a three dimensional supramolecular network. The magnetic properties of the complex show that there are weak antiferromagnetic interactions between Ni(II) centers.  相似文献   

9.
CuCr1.5Sb0.5S4 ? x Se x (x = 0, 0.5, 3.5, 4) metal chalcogenides with spinel structure have been synthesized for the first time. Unit cell parameters have been calculated and magnetic properties have been measured for the samples prepared. These samples are nonuniform antiferromagnets having Neel temperatures of T N = 21?C30 K.  相似文献   

10.
11.
Compound (H3O)2[{W6Br8}Br6] · 4H2O is synthesized by the reaction of polymeric tungsten bromide W6Br12 with hydrobromic acid in an ethanolic solution. The structure of the compound is a packing of counterions H3O+ and [{W6Br8}Br6]2? and crystallization water molecules joined with each other by an extended system of hydrogen bonds. The finely crystalline sample of the complex exhibits luminescence, whose spectrum has a broad profile from ??500 nm to more than 950 nm with a maximum at ??715 nm, with an absolute quantum yield of ??0.225. The emission is characterized by the biexponential decay with lifetimes of ??2.2 and ??8.4 ??s.  相似文献   

12.
《Solid State Sciences》2001,3(3):309-319
Single crystals of two lanthanide complexes, presenting similar formula Ln(H2O)x(C2O4)2 · NH4 with Ln=La, x=0 and Ln=Gd, x=1, have been prepared, in closed system at 200 °C. The gadolinium complex is bi-dimensional. A layer is built by the packing of the basic unit, [Gd(C2O4)]4. The gadolinium atoms are related only by bischelating oxalate ligands, the ammonium ion and the water molecule (bound to the gadolinium atom) are localized into the interlayer space. The lanthanum complex is tri-dimensional. The basic building unit remains approximately the same and the packing of these units form a layer. However, within these units, the lanthanum atoms are related by either an oxalate ligand or an edge. Moreover, an oxalate ligand assumes the connection between the layers. The ammonium ion is localized into two sets of intersecting channels. Pure phase of the gadolinium complex has been prepared at 100 °C and extended to some lanthanide elements, Eu…Yb. As the size of the lanthanide ionic radius is decreasing, it is noticeable that the a unit–cell constant follows an expansion pattern while the others two follow an usual contraction one. The thermal behavior of this family shows that the anhydrous compounds are obtained and that some water molecule is sorbed during the cooling. Thus, the anhydrous compounds present a relatively open-framework with some small micropores.  相似文献   

13.
14.
Nalidixium tetrachloroantimonate monohydrate, (C12H13N2O3)SbCl4 · H2O, has been synthesized and its crystal structure has been determined. The structure is built of the [Sb2Cl8]2? anions, C12H13N2O 3 + nalidixium cations, and H2O molecules joint by hydrogen bonds and π-π-and Cl?Cl interactions. The [Sb2Cl8]2? anion is a dimer of the SbCl5 E distorted octahedra sharing common Cl?Cl edge (E is the lone electron pair). The Sb polyhedra contain two short Sb-Cl bonds (2.387 and 2.395 Å), one bond of a medium length (2.508 Å), and two long bridging bonds (2.745 and 3.054 Å).  相似文献   

15.
Summary Crystals of Co2(X 2O7)·2H2O,X=P/As were synthesized under hydrothermal conditions. Their crystal structures were determined by single crystal X-ray diffraction:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2)Å, =94.77(2)/94.74(2)°, space group P21/n,R=0.032/0.046,R w=0.028/0.034 for 2423/2042 reflections and 131/119 variables. Within the twoXO4 tetrahedra connected via a common corner to anX 2O7 group the average P-O bond lengths are approximately equal (1.540 and 1.543 Å), but As-O differs significantly (1.685 and 1.696 Å). A comparison with the isotypic Mn and Mg pyrophosphates shows a correlation between the ratio Me-O/X-O and the angle O-X-O.
Vergleich der Kristallstrukturen von Co2(X 2O7)·2H2O,X=P und As
Zusammenfassung Kristalle von Co2(X 2O7)·2H2O,X=P/As wurden unter Hydrothermalbedingungen synthetisiert. Ihre Kristallstrukturen wurden mittels Röntgenbeugung an Einkristallen bestimmt:a=6.334(1)/6.531(2),b=13.997(2)/14.206(4),c=7.637(1)/7.615(2) Å, =94.77(2)/97.74(2)°, Raumgruppe P21/n,R=0.032/0.046,R w=0.028/0.034 für 2423/2042 Reflexe und 131/119 Variable. In den beiden über eine gemeinsame Ecke zuX 2O7-Gruppen verknüpftenXO4-Tetraedern sind die mittleren P-O-Abstände ungefähr gleich (1.540 und 1.543 Å), hingegen differiert As-O signifikant (1.685 und 1.696 Å). Ein Vergleich mit den isotypen Mn- und Mg-Pyrophosphaten zeigt eine Korrelation zwischen dem Quotienten Me-O/X-O und dem WinkelX-O-X.
  相似文献   

16.
Reaction of manganese acetate and lanthanide nitrates in the presence of excess of PhCOOH affords highly asymmetric dodecanuclear mixed-metal [Mn10Ln2(OH)(O)8(PhCOOH)(PhCOO)19] (Ln = PrIII (1), NdIII (2)) clusters. The similar reaction, but with only 2 equiv. of PhCOOH resulted in the compounds with higher nuclearity [Mn11Eu4(O)8(OH)8(PhCOO)18(NO3)2(H2O)6]NO3 · 4CH3CN (3). Variable-temperature solid-state magnetic susceptibility of 1 and 2 in the temperature range 1.8–300 K were carried out, and for both complexes antiferromagnetic exchange interactions between the metal centers were observed, giving an estimated S = 17/2 ground state. AC magnetic susceptibility data have revealed out-of-phase signals, which suggest that these complexes exhibit a slow relaxation of magnetization as observed in single-molecule magnets.  相似文献   

17.
18.
Tetraalkylammonium chlorides peroxosolvates (CH3)4NCl·H2O2 and (C2H5)4NCl·H2O2 were synthesized. The composition of the solvates was proved by chemical analysis; their X-ray patterns, IR spectra, and thermograms were obtained. The solubility of the solvates in water and their stability in aqueous solutions were investigated.  相似文献   

19.
The structural and magnetic properties of the newly crystallized CuX(2)(pyzO)(H(2)O)(2) (X = Cl, Br; pyzO = pyrazine-N,N'-dioxide) coordination polymers are reported. These isostructural compounds crystallize in the monoclinic space group C2/c with, at 150 K, a = 17.0515(7) ?, b = 5.5560(2) ?, c = 10.4254(5) ?, β = 115.400(2)°, and V = 892.21(7) ?(3) for X = Cl and a = 17.3457(8) ?, b = 5.6766(3) ?, c = 10.6979(5) ?, β = 115.593(2)°, and V = 950.01(8) ?(3) for X = Br. Their crystal structure is characterized by one-dimensional chains of Cu(2+) ions linked through bidentate pyzO ligands. These chains are joined together through OH···O hydrogen bonds between the water ligands and pyzO oxygen atoms and Cu-X···X-Cu contacts. Bulk magnetic susceptibility measurements at ambient pressure show a broad maximum at 7 (Cl) and 28 K (Br) that is indicative of short-range magnetic correlations. The dominant spin exchange is the Cu-X···X-Cu supersuperexchange because the magnetic orbital of the Cu(2+) ion is contained in the CuX(2)(H(2)O)(2) plane and the X···X contact distances are short. The magnetic data were fitted to a Heisenberg 1D uniform antiferromagnetic chain model with J(1D)/k(B) = -11.1(1) (Cl) and -45.9(1) K (Br). Magnetization saturates at fields of 16.1(3) (Cl) and 66.7(5) T (Br), from which J(1D) is determined to be -11.5(2) (Cl) and -46.4(5) K (Br). For the Br analog the pressure dependence of the magnetic susceptibility indicates a gradual increase in the magnitude of J(1D)/k(B) up to -51.2 K at 0.84 GPa, suggesting a shortening of the Br···Br contact distance under pressure. At higher pressure X-ray powder diffraction data indicates a structural phase transition at ~3.5 GPa. Muon-spin relaxation measurements indicate that CuCl(2)(pyzO)(H(2)O)(2) is magnetically ordered with T(N) = 1.06(1) K, while the signature for long-range magnetic order in CuBr(2)(pyzO)(H(2)O)(2) was much less definitive down to 0.26 K. The results for the CuX(2)(pyzO)(H(2)O)(2) complexes are compared to the related CuX(2)(pyrazine) materials.  相似文献   

20.
NaMg[PO3S]·9H2O was obtained as single-phase crystalline powder starting from NaOH, PSCl3 and MgCl2·6H2O. At room temperature NaMg[PO3S]·9H2O crystallises in space group Cmc21 (no. 36) (a=638.58(4) pm, b=1632.31(10) pm, c=1217.16(7) pm, Z = 4; Rint = 0.032, Rσ = 0.034, R1 = 0.036, wR2 = 0.071). The data collection at 100 K reveals an ordering of the PO3S tetrahedra by undergoing a symmetry reduction to P21 (no. 4) and an according formation of twins (C1121, unconv. setting of P21, a=631.41(3) pm, b=1630.00(7) pm, c=1219.24(5) pm, γ=90.00(2)°, Z = 4; Rint = 0.115, Rσ = 0.064, R1 = 0.045, wR2 = 0.070). NaMg[PO3S]·9H2O comprises isolated PO3S tetrahedra, distorted MgO6 octahedra and trigonal NaO6 prisms. 31P NMR spectroscopy showed a chemical shift of 33.7 ppm. The vibrational spectra of NaMg[PO3S]·9H2O were recorded and the relevant bands were assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号