首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure of the skin to sunlight results in an increase of the content of epidermal trans-urocanic acid, a key metabolite of L-histidine, and also in occurrence of the isomerization of trans-urocanic acid to the cis isomer. S-[2-Carboxy-1-(1H-imidazol-4-yl)ethyl]glutathione (GS(CIE)), an adduct of urocanic acid and glutathione, is a presumed origin of a urinary compound S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-L-cysteine (Cys(CIE)). The formation of GS(CIE) is stimulated by exposing the skin to sunlight irradiation. In this study we investigated an enzymatic formation of GS(CIE) from glutathione and cis-urocanic acid by incubation with rat liver extract that contained glutathione S-transferase (GST) at high activity. The formation of GS(CIE) was suppressed significantly when a liver extract depleted of GST activity was used. Enzymatic degradation of GS(CIE) with gamma -glutamyl transpeptidase resulted in the formation of N-[S-[2-carboxy-1-(1H-imidazol-4-yl)ethyl]-L-cysteinyl]glycine, a metabolic intermediate between the glutathione adduct and Cys(CIE). A hydrolyzed product of GS(CIE) by HCl was identical with the urinary Cys(CIE). Compounds were analyzed by high-voltage paper electrophoresis, capillary electrophoresis, and fast atom bombardment mass spectrometry. From these results, we suggest that GS(CIE) formed from cis-urocanic acid and glutathione is an origin of the urinary compound Cys(CIE) and that the formation reaction is catalyzed mostly by the action of GST.  相似文献   

2.
A new method has been developed for the monitoring of glutathione S-tranferase (GST) detoxification activity toward styrene oxide (SO). The enzymatic reaction was carried out directly in a thermostatted autosampler vial and the formation of conjugates between glutathione (GSH) and SO was monitored by sequential MEKC runs. The determinations were performed in a 50-microm fused silica capillary using 50 mM SDS in 20 mM phosphate 20 mM tetraborate buffer (pH 8.3) as a background electrolyte; separation voltage 28 kV (positive polarity), temperature of capillary 25 degrees C, and detection at 200 nm. The method is rapid, amenable to automation, and requires only small amounts of samples, which is especially important in the case of GST isoenzyme analyses.  相似文献   

3.
4.
Abstract— Superoxide dismutase (SOD) activity was induced by ca 2-fold (to5–6 U) when Trichoplusia ni midfifth-instar larvae were exposed to two toxic oxygen species generating plant pro-oxidants, quercetin (a flavonoid) and xanthotoxin (8-methoxypsoralen; a photoactive furanocoumarin). Very high catalase (CAT) activity ( ca 300 U) of this insect was not affected by 8-methoxypsoralen, but was slightly decreased by quercetin. No Se-dependent glutathione peroxidase (GPOX) activity was observed, but high glutathione transferase (GST) peroxidase activity (over 50 U) in this insect was slightly induced by 8-methoxypsoralen (8-MOP), and was partially inhibited by quercetin, 8-Methoxypsoralen induced the activity of glutathione reductase (GR), but quercetin partially inhibited the activity of this enzyme. An increase in SOD activity appears to be the main response of this insect to dietary exposure to pro-oxidant compounds. High CAT activity guarantees the destruction of large cellular increases in H2O2, a product of rapid dismutation of superoxide from induced activity of SOD. Moreover, GST with its peroxidase activity apparently substitutes for GPOX, forming a GST/GR enzyme pair as a primary line of defense against deleterious organic hydroperoxides. These studies clearly point out the key role for an insect's antioxidant enzymatic countermeasures against defensive pro-oxidant compounds produced by plants.  相似文献   

5.
Glutathione transferases (GST) are dimeric enzymes that take part in many detoxification processes. A previous report described the use of a glutathione-Sepharose affinity matrix for the purification of human liver GST. The method involved the use of 5 mM glutathione in a high pH buffer, and the yields were nearly 100%. This method and adapted techniques have now been applied to rat liver GST. Selective GST elution can be obtained in several different ways: by stepwise change of the pH and/or glutathione concentration, and by linear gradient elution. Gel electrophoresis showed, however, that none of the fractions contained pure GST isoenzymes. Also, less than 50% of the total rat liver GST was eluted with 5 mM glutathione, in contrast to the results with human liver GST. A glutathione concentration of 30 mM is necessary for quantitative desorption of rat liver GST from a glutathione-Sepharose column.  相似文献   

6.
Protein-directed dynamic combinatorial chemistry (DCC) relies on reversible chemical reactions that can function under the near-physiological conditions required by the biological target. Few classes of reaction have so far proven effective at generating dynamic combinatorial libraries (DCLs) under such constraints. In this study, we establish the conjugate addition of thiols to enones as a reaction well-suited for the synthesis of dynamic combinatorial libraries (DCLs) directed by the active site of the enzyme glutathione S-transferase (GST). The reaction is fast, freely reversible at basic pH, and easily interfaced with the protein, which is a target for the design of inhibitors in cancer therapy and the treatment of parasitic diseases such as schistosomiasis. We have synthesized DCLs based on glutathione (GSH, 1) and the enone ethacrynic acid, 2a. By varying either set of components, we can choose to probe either the GSH binding region ("G site") or the adjacent hydrophobic acceptor binding region ("H site") of the GST active site. In both cases the strongest binding DCL components are identified due to molecular amplification by GST which, in the latter system, leads to the identification of two new inhibitors for the GST enzyme.  相似文献   

7.
Platinum-based cancer drugs, such as cisplatin, are highly effective chemotherapeutic agents used extensively for the treatment of solid tumors. However, their effectiveness is limited by drug resistance, which, in some cancers, has been associated with an overexpression of pi class glutathione S-transferase (GST P1-1), an important enzyme in the mercapturic acid detoxification pathway. Ethacraplatin (EA-CPT), a trans-Pt(IV) carboxylate complex containing ethacrynate ligands, was designed as a platinum cancer metallodrug that could also target cytosolic GST enzymes. We previously reported that EA-CPT was an excellent inhibitor of GST activity in live mammalian cells compared to either cisplatin or ethacrynic acid. In order to understand the nature of the drug-protein interactions between EA-CPT and GST P1-1, and to obtain mechanistic insights at a molecular level, structural and biochemical investigations were carried out, supported by molecular modeling analysis using quantum mechanical/molecular mechanical methods. The results suggest that EA-CPT preferentially docks at the dimer interface at GST P1-1 and subsequent interaction with the enzyme resulted in docking of the ethacrynate ligands at both active sites (in the H-sites), with the Pt moiety remaining bound at the dimer interface. The activation of the inhibitor by its target enzyme and covalent binding accounts for the strong and irreversible inhibition of enzymatic activity by the platinum complex.  相似文献   

8.
Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two‐photon‐activatable glutathione (GSH) to trigger the interaction with glutathione S‐transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well‐confined photoconversion into the bioactive GSH, which is free to interact with GST‐tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three‐dimensional (3D) protein networks are simultaneously generated in situ through two‐photon fs‐pulsed laser‐scanning excitation. The two‐photon activation facilitates the three‐dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.  相似文献   

9.
Here we report the development of fluorogenic substrates for glutathione S-transferase (GST), a multigene-family enzyme mainly involved in detoxification of endogenous and exogenous compounds, including drug metabolism. GST is often overexpressed in a variety of malignancies and is involved in the development of resistance to various anticancer drugs. Despite the medical significance of this enzyme, no practical fluorogenic substrates for fluorescence imaging of GST activity or for high-throughput screening of GST inhibitors are yet available. So, we set out to develop new fluorogenic substrates for GST. In preliminary studies, we found that 3,4-dinitrobenzanilide (NNBA) is a specific substrate for GST and established the mechanisms of its glutathionylation and denitration. Using these results as a basis for off/on control of fluorescence, we designed and synthesized new fluorogenic substrates, DNAFs, and a cell membrane-permeable variant, DNAT-Me. These fluorogenic substrates provide a dramatic fluorescence increase upon GST-catalyzed glutathionylation and have excellent kinetic parameters for the present purpose. We were able to detect nuclear localization of GSH/GST activity in HuCCT1 cell lines with the use of DNAT-Me. These results indicate that the newly developed fluorogenic substrates should be useful not only for high-throughput GST-inhibitor screening but also for studies on the mechanisms of drug resistance in cancer cells.  相似文献   

10.
The identification of specific substrates of glutathione S‐transferases (GSTs) is important for understanding drug metabolism. A method termed bioorthogonal identification of GST substrates (BIGS) was developed, in which a reduced glutathione (GSH) analogue was developed for recognition by a rationally engineered GST to label the substrates of the corresponding native GST. A K44G‐W40A‐R41A mutant (GST‐KWR) of the mu‐class glutathione S‐transferases GSTM1 was shown to be active with a clickable GSH analogue (GSH‐R1) as the cosubstrate. The GSH‐R1 conjugation products can react with an azido‐based biotin probe for ready enrichment and MS identification. Proof‐of‐principle studies were carried to detect the products of GSH‐R1 conjugation to 1‐chloro‐2,4‐dinitrobenzene (CDNB) and dopamine quinone. The BIGS technology was then used to identify GSTM1 substrates in the Chinese herbal medicine Ganmaocongji.  相似文献   

11.
Light, GSH, action! Glutathione (GSH) fulfills a universal role as redox factor, scavenger of reactive oxygen species, and as an essential substrate in the conjugation, detoxification, and reduction reactions catalyzed by glutathione S-transferase (GST). A photoactivatable glutathione allows the GSH-GST network to be triggered by light. GST fusion proteins can be assembled in situ at variable density and structures by laser-scanning activation.  相似文献   

12.
A novel fluorescent nanoprobe for glutathione S‐transferase (GST) has been developed by incorporating 3,4‐dinitrobenzamide (a specific substrate of GST) onto CdTe/ZnTe quantum dots. The probe itself displays a low background signal due to the strong quenching effect of the electron‐withdrawing unit of 3,4‐dinitrobenzamide on the quantum dots. However, GST can efficiently catalyze the nucleophilic substitution of reduced glutathione on the p‐nitro group of the nanoprobe, leading to a large fluorescence enhancement. Most notably, this enhancement shows high selectivity and sensitivity towards GST instead of the other biological substances. With this nanoprobe, a simple fluorescence imaging method for intracellular GST has been established, and its applicability has been successfully demonstrated for imaging GST in different living cells, which reveals that A549 cells express GST about 3 times higher than NIH‐3T3 and Hela cells.  相似文献   

13.
The factors affecting enzymatic protein immobilization with microbial transglutaminase (MTG) were explored. As model proteins, enhanced green fluorescent protein (EGFP) and glutathione S-transferase (GST) were chosen and tagged with a neutral Gln-donor substrate peptide for MTG (Leu-Leu-Gln-Gly, LLQG-tag) at their C-terminus. To create a specific surface, displaying reactive Lys residues, to be cross-linked with the Gln residue in the LLQG-tag of target proteins by MTG catalysis, a polystyrene surface was physically coated with beta-casein. Both recombinant proteins were immobilized onto the beta-casein-coated surface only in the presence of active MTG, indicating that those proteins were enzymatically immobilized to the surface. MTG-mediated protein immobilization markedly depends on the pH and ionic strength of the reaction media. The optimal pH range of MTG-mediated immobilization of both recombinant proteins was around 5, at which point the MTG-catalyzed reaction in aqueous solution is not normally preferred. By utilizing a pH-dependent change in EGFP fluorescence, we found that the apparent pH at the surface is likely to be lower than bulk pH, this difference is not attributed to an optimal pH shift in MTG-mediated immobilization. On the other hand, lower yields of protein immobilization at higher ionic strength suggest that electrostatic interaction is a key factor governing MTG catalysis at a solid surface. The results of this study indicate that, in enzymatic catalysis at a solid surface, the concentration of substrates at the surface can enhance the catalytic efficiency, and this could alter the pH dependence of enzymatic catalysis.  相似文献   

14.
Mammalian cytosolic glutathione transferases   总被引:1,自引:0,他引:1  
Glutathione Transferases (GSTs) are crucial enzymes in the cell detoxification process catalyzing the nucleophilic attack of glutathione (GSH) on toxic electrophilic substrates and producing a less dangerous compound. GSTs studies are of great importance since they have been implicated in the development of drug resistance in tumoral cells and are related to human diseases such as Parkinson's, Alzheimer's, atherosclerois, liver cirrhosis, aging and cataract formation. In this review we start by providing an evolutionary perspective of the mammalian cytosolic GSTs known to date. Later on we focus on the more abundant classes alpha, mu and pi and their structure, catalysis, metabolic associated functions, drug resistance relation and inhibition methods. Finally, we introduce the recent insights on the GST class zeta from a metabolic perspective.  相似文献   

15.
The copolymer poly(L-lactic acid)-b-poly(L-cysteine) (PLA-b-PCys) was co-electrospun with PLGA into ultrafine fibers. The reduced glutathione (GSH) was conjugated to the fiber surfaces via disulfide bonds. The glutathione S-transferase (GST) was captured onto the GSH fibers via specific substrate-enzyme interaction between the bound GSH and GST. The captured GST was eluted with free GSH aqueous solution and lyophilized to get pure GST powders. The results show that the GSH moieties on the fiber surface retain the bioactivity of the free GSH and thus they can bind specifically with GST and the GST in solution is captured onto the fiber surface. In addition, the bound GSH is not as active as free GSH so that the captured GST can be eluted off from the fiber by free GSH aqueous solution. Based on this principle, GST itself or its fused proteins can be separated and purified very easily. The preliminary purification efficiency is 6.5 mg·(gPCys)−1. Further improvements are undertaken.  相似文献   

16.
Here we demonstrate for the first time the application of intact cell matrix-assisted laser desorption/ionization mass spectrometry (ICM-MS) to study the regulation of protein expression. This technique can be extended to screen the drugs that inhibit protein synthesis in various diseases. We have used Escherichia coli cells expressing a recombinant glutathione-S-transferase (GST) gene under an arabinose-inducible promoter as a model system. Using ICM-MS analysis, we have detected a 28 kDa peak corresponding to the production of recombinant GST under the arabinose-induced condition. Furthermore, recombinant GST protein was purified by a single-step affinity purification using a glutathione Sepharose 4B affinity column from arabinose-induced E. coli cells. The purified GST protein was found to be a 28 kDa protein by MALDI analysis suggesting the arabinose-induced protein is indeed GST. The regulation of protein expression was studied using glucose as an alternative metabolite. The glucose-mediated regulation of the ara-operon was followed using the ICM-MS technique. All the results obtained from ICM-MS data were validated using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) analysis. The present technique can be extended for in vivo screening of drugs and it holds tremendous potential to discover novel drugs against specific protein expressions in different diseases.  相似文献   

17.
We analyzed the effects of UV radiation (UVR) effects on acetylcholinesterase (AChE) activity in two calanoid copepods, Boeckella gibbosa and Parabroteas sarsi that inhabit Patagonian shallow lakes. We studied the effect of experimental UVR (UV-B and UV-A) exposure on AChE activity in relation to basal antioxidant capacities of both copepods. Our experiments showed that UVR can effectively depress AChE activity, although with differences between species. In both copepods AChE was affected by UV-B, whereas UV-A only affected AChE in B. gibbosa. Both copepods also differed in body elemental composition (C:N:P), photoprotecting compound content (carotenoids and mycosporine-like amino acids) and enzymatic antioxidant capacity (glutathione S-transferase [GST]). Our results suggest that when exposed to UVR, AChE activity would depend more on the antioxidant capacity (GST) and P availability for enzyme synthesis than on the photoprotective compounds.  相似文献   

18.
Glutathione forms complex reaction products with formaldehyde, which can be further modified through enzymatic modification. We studied the non-enzymatic reaction between glutathione and formaldehyde and identified a bicyclic complex containing two equivalents of formaldehyde and one glutathione molecule by protein X-ray crystallography (PDB accession number 2PFG). We have also used (1)H, (13)C and 2D NMR spectroscopy to confirm the structure of this unusual adduct. The key feature of this adduct is the involvement of the gamma-glutamyl alpha-amine and the Cys thiol in the formation of the bicyclic ring structure. These findings suggest that the structure of GSH allows for bi-dentate masking of the reactivity of formaldehyde. As this species predominates at near physiological pH values, we suggest this adduct may have biological significance.  相似文献   

19.
The analysis of glutathione transferase (GST) isoenzyme patterns is of interest in many fields as hepatic glutathione transferase activity is increased by exposure to a variety of xenobiotics and its isoenzymatic forms are induced differentially. A high-performance liquid chromatography method has been developed for the rapid determination of individual isoenzyme levels in crude extracts using an anion-exchange column connected to an on-line system to automatically detect GST activity with 1-chloro-2,4-dinitrobenzene as the substrate. When 50-200 microliters of a cytosolic fraction of fish liver containing up to 15 mg/ml of protein and less than 2 units of GST were injected, a high resolution and highly reproducible chromatogram was obtained. The activity profile determined automatically showed eight to twelve peaks (depending on the sample) that were quantified and could be classified into three groups. Starting from intact tissue, a complete isoenzyme pattern could be obtained in less than 3 h. The method has been applied to ecotoxicological studies with fish samples.  相似文献   

20.
The affinity bond between glutathione (GSH) and glutathione S-transferase (GST) is exploited as a means for ‘connectivity’ for engineered proteins at a surface plasmon resonance (SPR) surface. If the protein of interest is recombinantly fused to GST the resulting fusion protein can be linked specifically to GSH self-assembled on a gold surface. Classical self-assembly and the potential assisted self-assembly were compared. The classical method produced unstable layers. Applying a potential during the assembly process significantly improved stability and reproducibility. Suitable GSH layers could be deposited at potentials >0.2 V versus Ag/AgCl, where the reductive desorption showed no desorption peaks between −0.85 and −1.1 V. The GSH-functionalised surface was tested for applicability with the plant cyclin-dependent kinase (CDK) Cdc2aAm recombinantly fused to GST. The fusion protein maintained both the affinity for glutathione and the activity for cyclin binding of its parent proteins. SPR signals due to the interaction of Cdc2aAm with a cyclin-binding-site specific antibody were confirmed by ELISA. In this instance, this test system opens up the possibility of studying the cell cycle machinery, but more widely the issues concerned with maintaining the correct conformations of proteins to achieve protein arrays can be developed from this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号