首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photocatalytic transformation of dexamethasone and the formation of its intermediate compounds have been studied using titanium dioxide as a photocatalyst. The degradation of dexamethasone occurs easily through the formation of several hydroxy derivatives whose characterization has been made by HPLC/MS/MS. Even if both oxidative and reductive processes can be operating, only oxidative products have been identified in air saturated aqueous suspensions. A pattern of reaction pathways accounting for the observed intermediates is proposed. The obtained experimental evidence may be rationalized postulating the existence of a double initial mechanism. A single oxidation step resulting from the attack by one ·OH radical leading to the formation of five hydroxy-derivatives and a concomitant attack involving two ·OH radicals leading to the hydroxylation of the quinoid moiety of the molecule.  相似文献   

2.
The paper deals with the photocatalytic transformation of two antibacterial agents, ofloxacin and ciprofloxacin, under simulated solar irradiation using titanium dioxide as photocatalyst. The investigation involved monitoring decomposition of the drugs, identifying intermediate compounds, assessing mineralization, and evaluating the toxicity of drug derivatives. High-resolution mass spectrometry was employed to assess evolution of the photocatalyzed process over time. Respectively 15 and 8 main species were identified after transformation of ofloxacin and ciprofloxacin. Through the full analysis of MS and MSn spectra and a comparison with parent drug fragmentation pathways, the different isomers were characterized. In the ofloxacin molecule, the initial transformation attacks are confined to the piperazine moiety and to the methyl groups, while the fluoroquinolone core is unmodified. Conversely, ciprofloxacin degradation involves two parts of the molecule: the piperazinic moiety and the quinolone moiety. All these intermediates are easily degraded and by 4 h mineralization is complete. Toxicity assays using Vibrio fischeri prove that neither ciprofloxacin nor its intermediates exhibit acute toxicity. In ofloxacin the secondary degradation products exhibit toxicity; a correlation exists between the evolution of the intermediate compounds and the toxicity connected to them.  相似文献   

3.
The photocatalytic transformation of dexamethasone and the formation of its intermediate compounds have been studied using titanium dioxide as a photocatalyst. The degradation of dexamethasone occurs easily through the formation of several hydroxy derivatives whose characterization has been made by HPLC/MS/MS. Even if both oxidative and reductive processes can be operating, only oxidative products have been identified in air saturated aqueous suspensions. A pattern of reaction pathways accounting for the observed intermediates is proposed. The obtained experimental evidence may be rationalized postulating the existence of a double initial mechanism. A single oxidation step resulting from the attack by one ·OH radical leading to the formation of five hydroxy-derivatives and a concomitant attack involving two ·OH radicals leading to the hydroxylation of the quinoid moiety of the molecule.  相似文献   

4.
We have studied the photocatalytic transformation of atenolol, 4-[2-hydroxy-3-[(1-methyl)amino]propoxyl]benzeneacetamide, a cardioselective beta-blocking agent used to treat cardiac arrhythmias and hypertension, under simulated solar irradiation using titanium dioxide as photocatalyst. The investigation involved monitoring drug decomposition, identifying intermediate compounds, assessing mineralization, and evaluating toxicity. High-performance liquid chromatography (HPLC) coupled to high-resolution mass spectrometry (HRMS) via an electrospray ionization (ESI) interface was a powerful tool for the identification and measurement of the degradation products; 23 main species were identified. Intermediates were characterized through their chromatographic behavior and evolution kinetics, coupled with accurate mass information. Through the full analysis of MS and MS(n) spectra and a comparison with parent drug fragmentation pathways, the diverse isomers were characterized. Neither atenolol nor the intermediates formed exhibit acute toxicity. All intermediates are easily degraded and no compound identified could withstand 2 h irradiation. Photomineralization of the substrate in terms of carbon mineralization and nitrogen release was rapid and, within 4 h of irradiation, organic nitrogen and carbon were completely mineralized.  相似文献   

5.
Tebuconazole is a widely used fungicide. The formation of by-products on irradiated titanium dioxide as a photocatalyst was evaluated. Several species derived from tebuconazole degradation were identified and characterized by HPLC/MS(n). A pattern of reactions accounting for the observed intermediates is proposed. Different parallel pathways are operating (and through these pathways the transformation of the molecule proceeds), leading to a wide range of intermediate compounds. All these molecules are more hydrophylic than tebuconazole. The main steps involved are (1) the hydroxylation of the molecule with the formation of three species having [M + H](+) 324; the hydroxylation occurs on the C-1 carbon and on the aromatic ring in the two ortho-positions; (2) the cleavage of a C--C bond with the release of the tert-butyl moiety and the formation of a species having m/z 250; analogously to step 1, also on this species a further hydroxylation reaction occurs; (3) through the loss of the triazole moiety with the formation of a structure with m/z 257.  相似文献   

6.
The TiO2/UV photocatalytic degradation of Michler's Ketone (MK) has been investigated in aqueous heterogeneous suspensions. Results obtained show rapid and complete oxidation of MK after 24‐h, and more than 97.5% of MK was mineralized after a 32‐h exposure to UV‐365 nm irradiation. Establishment of the reaction pathway was made possible by a thorough analysis of the reaction mixture identifying the main intermediate products generated. Nine intermediates have been detected by HPLC/ESI‐MS and GC/MS techniques. The photocatalytic degradation of MK proceeds through competitive reactions such as N‐de‐methylation and destruction of the bis‐aminobenzophenone structure. The former reaction took place in a stepwise manner to yield mono‐, di‐, tri‐, tetra‐demethylated species, while the latter reaction yielded N‐methylaminobenzene and aminobenzene. The reaction mechanisms of TiO2/UV proposed in this study should shed some light on future applications of the technology to the destruction of organic pollutants.  相似文献   

7.
The supported nano-TiO2 electrode was prepared by sol–gel and hydrothermal method, and the photoelectrocatalytic degradation of 4-chlorophenol (4-CP) under UV irradiation has been investigated to reveal the roles of hydroxyl radicals and dissolved oxygen species for TiO2-assisted photocatalytic reactions. The degradation kinetics, the formation and decay of intermediates, the isotopic tracer experiments with H2O18, the removal yield of total organic carbon and the formation of active radical species in the presence of oxygen or not were examined by HPLC, GC–MS, TOC and spin-trap ESR spectrometry. It was found that most of OH radicals in the primary hydroxylated intermediates derived from the oxidation of adsorbed H2O or HO by photo-holes in the electrochemically assisted TiO2 photocatalytic system. It also indicates that the enhancement in the separation efficiency of photogenerated charges by applying a positive bias (+0.5 V vs SCE) has little role in the following decomposition and mineralization of these hydroxylated intermediates in the absence of oxygen. According to above experimental results, the pathway of 4-CP photocatalytic degradation was deduced initially. Due to the combined effect of OH radicals and dissolved oxygen species, the hydroxylated 4-chlorphenol, via cis, cis-3-chloromuconic acid, was decomposed into low molecular weight acid and CO2.  相似文献   

8.
The purpose of this study is to artificially produce degradation intermediates of thiabendazole, which could be reasonably similar to those really present in the environment. The formation of by-products from thiabendazole transformation has been evaluated by adopting irradiated titanium dioxide as a photocatalyst. Several species more hydrophilic than the thiabendazole have been identified and characterized by HPLC-multiple MS. A pattern of reactions accounting for the observed intermediates is proposed. Two different parallel pathways are operating (and through these pathways the transformation of the molecule proceeds) leading to several intermediate compounds. The main steps involved are: (1) the hydroxylation of the molecule on the aromatic ring with the formation of a species having [M+H]+ 218; a further oxidation leads to the ring-opening and to the formation of aldehydic and alcoholic structures ([M+H]+ 270, 268 and 152); and (2) the cleavage of a C-C bond and the formation of a species having [M+H]+ 119.  相似文献   

9.
It was shown that a single phase YBa2Cu4O8 (124-phase) could be formed from gels at 1 atm oxygen pressure, and the mechanism of its formation was elucidated. It was found that there are two key routes for the sol-gel formation of the 124-phase, one involving the tetragonal YBa2Cu3O y with a low concentration of oxygen defects (tetra-I phase) and the other involving the Ba2Cu3O5.9 as important intermediates of the 124-phase. The rapid formation of these intermediate compounds from the gel was attributed to the small particle size of the oxides and carbonates precipitating at the initial stage of heating. It was thought that the small particles characteristic of sol-gel processing lead to the rapid formation of the intermediate compounds and subsequent precipitation of the 124-phase.  相似文献   

10.
何霏  马芳  李涛  李光兴 《催化学报》2013,34(12):2263-2270
采用三种不同的氮源溶剂热合成了锐钛矿-板钛矿混晶的N-TiO2催化剂.采用X射线衍射、N2吸附-脱附、X射线光电子能谱和透射电子显微镜等手段对催化剂进行了表征.重点研究了不同氮源对催化剂的相组成、晶粒尺寸、微观结构以及比表面积的影响.采用紫外光降解气相苯测试了合成材料的催化活性.结果表明,以水合肼为氮源合成的N-TiO2表现出最优的光催化活性,其活性明显高于P25,且能够循环使用15次以上.采用气相色谱-质谱技术分析了光降解过程的中间产物,基于此提出了相应的降解机理.  相似文献   

11.
Summary.  The stereo- and regiochemistry of di-, tri-, and tetracyclic enaminones upon catalytic hydrogenation on Pd and Pt catalysts seems to be mainly a function of the catalyst and the medium. The highest stereoselectivity was observed for multiflorine on Pd/C in which 99% of equatorial alcohol were formed in this case, the formation of alcohols proceeds via a ketonic intermediate. On platinum, irrespective of the solvent used (EtOH, H2O, AcOH, HCl), the hydrogenation reaction proceeds through ketonic (piperidone system) and dehydro (pyridone system) intermediates. In EtOH or H2O solution, the dehydro product remains unchanged, whereas the ketonic intermediate is reduced to a mixture of epimeric alcohols. In HCl and acetic acid, both intermediates are hydrogenolyzed to a product with a methylene group, but the ketonic one is additionally reduced to a mixture of epimeric alcohols. Reductions with complex metal hydrides provide mixtures of epimeric alcohols with a predominance of equatorial orientation. The structures of products were determined by NMR spectroscopy and/or by GC-MS analysis. Received December 28, 2000. Accepted (revised) February 16, 2001  相似文献   

12.
Lignocellulosic biomass can be converted to high‐value phenolic compounds, such as food additives, antioxidants, fragrances and fine chemicals. We investigated photochemical and heterogeneous photocatalytic oxidation of two isomeric phenolic compounds from lignin, isoeugenol and eugenol, in several nonprotic solvents, for the first time by experiment and the density functional theory (DFT) calculations. Photooxidation was conducted under ambient conditions using air, near‐UV light and commercial P25 TiO2 photocatalyst, and the products were determined by TLC, UV–Vis absorption spectroscopy, HPLC‐UV and HPLC‐MS. Photochemical and photocatalytic oxidation of isoeugenol proceeds via the mild oxidative “dimerization” to produce the lignan dehydrodiisoeugenol (DHDIE), while photooxidation of eugenol does not proceed. The DFT calculations suggest a radical stepwise mechanism for the oxidative “dimerization” of isoeugenol to DHDIE as was calculated for the first time.  相似文献   

13.
The feasibility and performance of photocatalytic degradation and toxicity reduction of textile dye (Acid Blue 25) have been studied at pilot scale in an immobilized titania nanoparticle photocatalytic reactor. UV-Vis, Ion Chromatography (IC) and chemical oxygen demand (COD) analyses were employed to obtain the details of the photocatalytic dye degradation. The effects of operational parameters such as H2O2, pH and dye concentration on the photocatalytic degradation of Acid Blue 25 were investigated. The aliphatic carboxylic acid intermediates and inorganic anions generated during the dye degradation process were analyzed. Daphnia magna bioassay has been used to test the progress of toxicity during the treatment process. Total disappearance of dye was attained. During the photocatalytic treatment process, the residual acute toxicity was reduced. The results showed that immobilized titania nanophotocatalysis capable to degradation and toxicity reduction of acid dye textile wastewater.  相似文献   

14.
The cycloaddition reaction between 2,3-dimethylbuta-1,3-diene and allyl methacrylate proceeds by the second order kinetics. The rate constants increase with the increase in the excess of one of the reactants. The change in the effective rate constants is described by the Michaelis-Menten equation indicating that the reaction proceeds through the initial equilibrium stage of formation of an intermediate complex which then transforms into the product. The effective rate constants, the equilibrium constants of formation of the intermediate complex, and the rate constant of its transformation into the reaction product were determined, as well as the thermodynamic parameters of the formation of the intermediate complex and the activation parameters of the transformation of the intermediate complex into the product. The limiting stage of the reaction is established and its mechanism is suggested.  相似文献   

15.
Fate of antibacterial spiramycin in river waters   总被引:2,自引:0,他引:2  
Spiramycin, a widely used veterinary macrolide antibiotic, was found at traceable levels (nanograms per litre range) in Po River water (N-Italy). The aqueous environmental fate of this antibiotic compound was studied through drug decomposition, the identification of the main and secondary transformation products (TPs), assessment of mineralisation and the investigation of drug TPs toxicity. Initially, laboratory experiments were performed, with the aim of stimulating the antibacterial transformation processes followed in aquatic systems. The TPs were identified through the employment of the liquid chromatography (LC)-mass spectrometry technique. Under illumination, spiramycin degraded rapidly and transformed into numerous organic (intermediate) compounds, of which 11 could be identified, formed through five initial transformation routes. These laboratory simulation experiments were verified in situ to check the mechanism previously supposed. Po River water was sampled and analysed (by LC-high-resolution mass spectrometry) at eight sampling points. Among the previously identified TPs, five of them were also found in the river water. Three of them seem to be formed through a direct photolysis process, while the other two are formed through indirect photolysis processes mediated by natural photo sensitisers. The transformation occurring in the aquatic system involved hydroxylation, demethylation and the detachment of forosamine or mycarose sugars. Toxicity assays using Vibrio fischeri proved that even if spiramycin did not exhibit toxicity, its transformation proceeded through the formation of toxic products.  相似文献   

16.
p-Hydroxybenzylation of Carbanions with Quinonemethide Precursors. 3,5-Dialkylated 4-hydroxy-benzyl derivatives 4, 5 and 6 are useful starting materials for the p-hydroxybenzlation of carbanions derived from activated methylene compounds 7 . The reaction presumably proceeds through intermediate formation of quinonemethides 2 . The scope of the reaction is discussed.  相似文献   

17.
Addition of selenium dibromide to 1-hexene, 1-octene, and allylic ethers occurs through the formation of intermediate kinetic anti-Markovnikov adducts that further transform into more thermodynamically stable Markovnikov adducts presumably via seleniranium intermediates. The methanolysis of both Markovnikov and anti-Markovnikov adducts leads to the formation of the same products in approximately the same ratio thus showing that the reaction proceeds through seleniranium intermediates.  相似文献   

18.
A whole cell-based amperometric biosensor for highly selective, sensitive, rapid, and cost-effective determination of the organophosphate pesticides fenitrothion and ethyl p-nitrophenol thiobenzenephosphonate (EPN) is discussed. The biosensor comprised genetically engineered p-nitrophenol (PNP)-degrading bacteria Pseudomonas putida JS444 anchoring and displaying organophosphorous hydrolase (OPH) on its cell surface as biological sensing element and carbon paste electrode as the amperometric transducer. Surface-expressed OPH catalyzed the hydrolysis of organophosphorous pesticides such as fenitrothion and EPN to release PNP and 3-methyl-4-nitrophenol, respectively, which were subsequently degraded by the enzymatic machinery of P. putida JS444 through electrochemically active intermediates to the TCA cycle. The electrooxidization current of the intermediates was measured and correlated to the concentration of organophosphates. Operating at optimum conditions, 0.086 mg dry wt of cell operating at 600 mV of applied potential (vs Ag/AgCl reference) in 50 mM citratephosphate buffer, pH 7.5, with 50 μM CoCl2 at room temperature, the biosensor measured as low as 1.4 ppb of fenitrothion and 1.6 ppb of EPN. There was no interference from phenolic compounds, carbamate pesticides, triazine herbicides, or organophosphate pesticides without nitrophenyl substituent. The service life of the biosensor and the applicability to lake water were also demonstrated.  相似文献   

19.
Photocatalysis has emerged as an ideal method for the direct activation and conversion of methane under mild conditions. In this reaction, methyl radical (⋅CH3) was deemed a key intermediate that affected the yields and selectivity of the products. However, direct observation of ⋅CH3 and other intermediates is still challenging. Here, a rectangular photocatalytic reactor coupled with in situ synchrotron radiation photoionization mass spectrometry (SR-PIMS) was developed to detect reactive intermediates within several hundred microseconds during photocatalytic methane oxidation over Ag−ZnO. Gas phase ⋅CH3 generated by photogenerated holes (O) was directly observed, and its formation was demonstrated to be significantly enhanced by coadsorbed oxygen molecules. Methoxy radical (CH3O⋅) and formaldehyde (HCHO) were confirmed to be key C1 intermediates in photocatalytic methane overoxidation to CO2. The gas-phase self-coupling reaction of ⋅CH3 contributes to the formation of ethane, which indicates the key role of ⋅CH3 desorption in the highly selective synthesis of ethane. Based on the observed intermediates, the reaction network initiated from ⋅CH3 of photocatalytic methane oxidation could be clearly illustrated, which is helpful for studying the photocatalytic methane conversion processes.  相似文献   

20.
无氧条件下Pt/TiO2光催化重整降解一乙醇胺水溶液制氢   总被引:2,自引:0,他引:2  
以一乙醇胺(以下简称乙醇胺)为电子给体,在无氧条件下进行了Pt/TiO2光催化重整制氢的研究.详细讨论了诸多因素如催化剂表面Pt化学状态、Pt担载量、溶液pH值、乙醇胺溶液浓度等对产氢效率的影响,并用XRD、HNMR、XPS等进行了深入表征,探讨了Pt/TiO2光催化重整降解乙醇胺和产氢的反应, 实验表明,利用所制备的光催化剂, 可实现在消除水中有机污染物的同时制取氢气的目标.催化剂表面的Pt以Pt0的化学状态存在, 有利于析氢;溶液pH值和浓度的变化对产生速率也有一定的影响.同时发现Pt/TiO2光催化重整乙醇胺制氢反应的最佳条件是:Pt的最佳担载量约为0.5%~1.0%;乙醇胺溶液最佳浓度约为0.05 mol•L-1;最佳溶液pH值范围为4~10;氨基取代的羰基类化合物是其主要中间产物.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号