首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Antibiotic resistant bacterial strains represent a global health problem with a strong social and economic impact. Thus, there is an urgent need for the development of antibiotics with novel mechanisms of action. There is currently an extensive effort to understand the mode of action of antimicrobial peptides which are considered as one alternative to classical antibiotics. The main advantage of this class of substances, when considering bacterial resistance, is that they rapidly, within minutes, kill bacteria. Antimicrobial peptides can be found in every organism and display a wide spectrum of activity. Hence, the goal is to engineer peptides with an improved therapeutic index, i.e. high efficacy and target specificity. For the rational design of such novel antibiotics it is essential to elucidate the molecular mechanism of action. Biophysical studies have been performed using to a large extent membrane model systems demonstrating that there are distinctive different mechanisms of bacterial killing by antimicrobial peptides. One can distinguish between peptides that permeabilize and/or disrupt the bacterial cell membrane and peptides that translocate through the cell membrane and interact with a cytosolic target. Lantibiotics exhibit specific mechanisms, e.g. binding to lipid II, a precursor of the peptidoglycan layer, either resulting in membrane rupture by pore formation or preventing cell wall biosynthesis. The classical models of membrane perturbation, pore formation and carpet mechanism, are discussed and related to other mechanisms that may lead to membrane dysfunction such as formation of lipid-peptide domains or membrane disruption by formation of non-lamellar phases. Emphasis is on the role of membrane lipid composition in these processes and in the translocation of antimicrobial peptides.  相似文献   

2.
Cancer is a major cause of premature death and there is an urgent need for new anticancer agents with novel mechanisms of action. Here we review recent studies on a group of peptides that show much promise in this regard, exemplified by arthropod cecropins and amphibian magainins and aureins. These molecules are alpha-helical defence peptides, which show potent anticancer activity (alpha-ACPs) in addition to their established roles as antimicrobial factors and modulators of innate immune systems. Generally, alpha-ACPs exhibit selectivity for cancer and microbial cells primarily due to their elevated levels of negative membrane surface charge as compared to non-cancerous eukaryotic cells. The anticancer activity of alpha-ACPs normally occurs at micromolar levels but is not accompanied by significant levels of haemolysis or toxicity to other mammalian cells. Structure/function studies have established that architectural features of alpha-ACPs such as amphiphilicty levels and hydrophobic arc size are of major importance to the ability of these peptides to invade cancer cell membranes. In the vast majority of cases the mechanisms underlying such killing involves disruption of mitochondrial membrane integrity and/or that of the plasma membrane of the target tumour cells. Moreover, these mechanisms do not appear to proceed via receptor-mediated routes but are thought to be effected in most cases by the carpet/toroidal pore model and variants. Usually, these membrane interactions lead to loss of membrane integrity and cell death utilising apoptic and necrotic pathways. It is concluded that that alpha-ACPs are major contenders in the search for new anticancer drugs, underlined by the fact that a number of these peptides have been patented in this capacity.  相似文献   

3.
黄振龙  陈令成  肖义 《应用化学》2017,34(12):1370-1378
线粒体是一种具有双层膜结构的细胞器,参与细胞新陈代谢过程的能量循环以及离子平衡过程,在细胞生理过程中具有极其重要的意义。一些小分子荧光染料/探针结构中带有正电荷,因受到线粒体内膜负电势的牵引而标记在线粒体上,为研究线粒体的形态或功能提供了重要的可视化成像工具。然而,大多数线粒体染料/探针对线粒体的靶向标记稳定性仍不够理想,因为线粒体电势处于不断的动态变化中,当电势降低时,对染料的亲和力相应降低。尤其在病理条件下(比如细胞凋亡)细胞代谢受到阻滞时,线粒体膜电势显著降低,阳离子染料将扩散离开线粒体,造成非特异性荧光。最近,Kim团队和本人课题组提出可固定线粒体探针的新概念,用活性基团将荧光分子探针通过共价键固定在线粒体中,开发了稳定靶向线粒体中的定量探测微环境p H值、粘度、膜电势荧光探针。我们认为,对于追踪和探测具有高度动态变化特性的线粒体而言,开发可固定的线粒体荧光分子探针是必然趋势,因此本文进行评述和展望。  相似文献   

4.
Cell-adhesive peptides derived from extracellular matrix (ECM) proteins are potential candidates for incorporating cell-binding activities into materials for tissue engineering. We have identified a number of cell adhesive peptides from laminins, which are major components of basement membrane ECM. Our goal is the development of synthetic basement membranes using the peptides on scaffolds. We review peptide–polysaccharide complexes, which were prepared by conjugation of the peptides to chitosan and alginate, and the biological activities of the resulting matrices. The peptide–polysaccharide matrices can also be used as a biomaterial for cell transplantation. These studies suggest that the peptide–polysaccharide complexes have the potential to mimic the multifunctional basement membrane and may be useful for tissue engineering.  相似文献   

5.
Mitochondrion is a promising target in cancer therapy. However, gaining access to this organelle is difficult due to the obstacles to cross the complicated mitochondrial membrane. Cell-penetrating peptides (CPPs) with mitochondrion-targeting ability, named mitochondrion-targeting peptides (MTPs), are efficient tools to deliver exogenous therapeutics into mitochondria. Herein, we report several new MTPs, which can be readily synthesized via resin-based solid-phase peptide synthesis. In particular, MTP3 (compound 5 ), consisting of three positively charged arginines and two D- and L- alternating naphthylalanines, demonstrated excellent mitochondrion-targeting ability with high Pearson's correlation coefficient, suggesting that MTP3 has good potential for mitochondrion-targeted drug delivery. As proof-of-concept, the feasibility of MTP3 was validated by the preparation of a mitochondrion-targeting prodrug (compound 17 , doxorubicin-based prodrug). This prodrug was subsequently confirmed to be specifically transported to the mitochondria of tumor cells, where it was able to release the native doxorubicin upon intracellular GSH activation, leading to mitochondrial depolarization and eventually cell death. Importantly, compound 17 showed good cytotoxicity against human tumor cells while negligible toxicity towards normal cells, indicating its potential as a potent mitochondrial medicine for targeted cancer therapy. Our study thus opens a way for engineered CPPs to be used to deliver bioactive cargos in mitochondrion-targeted cancer therapy.  相似文献   

6.
Genetic variations of the mitochondrial genome lead to severe neuromuscular diseases in man. A treatment of these utilizing a somatic gene therapy approach is invariably linked to a mitochondrial transfection system. A novel technique of targeting nucleic acids to mitochondria has been developed that takes advantage of the protein import pathway. The system is based on chimerical molecules that are composed of a DNA and a protein moiety, harboring the information for mitochondrial targeting. Upon recognition of these molecules by a receptor on the outer mitochondrial membrane, the molecules are able to cross the membrane system and are released into the matrix of the organelle. The further development of this technique will give to rise to strategies for the treatment of mitochondrial DNA diseases by a somatic gene therapy approach.  相似文献   

7.
Complex III of the mitochondrial electron transport chain, ubiquinol-cytochrome c reductase, was isolated by blue native polyacrylamide gel electrophoresis. Ten of the 11 polypeptides present in this complex were detected directly by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following electroelution of the active complex. Tryptic and chymotryptic digestion of the complex permit the identification of specific peptides from all of the protein subunits with 70% coverage of the 250 kDa complex. The mass of all 11 proteins was confirmed by second dimension Tricine sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and elution of the separated polypeptides. Additionally, the identity of the core I, core II, cytochrome c and the Rieske iron-sulfur protein were confirmed by liquid chromatography/tandem mass spectrometry (LC/MS/MS) characterization of the peptides generated by in-gel trypsin digestion of the SDS-PAGE separated proteins. The methodology demonstrated for analyzing this membrane-bound electron transport complex should be applicable to other membrane complexes, particularly the other mitochondrial electron transport complexes. The MS analysis of the peptides obtained by in-gel digestion of the intact complex permits the simultaneous characterization of the native proteins and modifications that contribute to mitochondrial deficits that have been implicated as contributing to pathological conditions.  相似文献   

8.
Cytochrome c is a key mitochondrial respiratory protein that is particularly susceptible to modification during oxidative stress. The nature of this susceptibility is linked to the mitochondrial membrane being rich in esterified linoleic acid, which predisposes this organelle to the formation of lipid peroxidation products such as 4-hydroxy-2-(E)-nonenal (4-HNE). To better understand the nature of cytochrome c modification by 4-HNE, we initiated an in vitro study utilizing a combination of MALDI-TOF mass spectrometry, LC-ESI-MS/MS and isotope labeling to monitor 4-HNE modification of cytochrome c under various conditions. The overwhelming reaction observed is Michael addition by Lys side-chains in addition to the modification of His 33. While the Lys-4-HNE adducts were generally observed to be reversible, the 4-HNE-His 33 was observed to be stable with half of the formed adduct surviving the denaturation and proteolysis protocols used to generate proteolytic peptides for LC-ESI-MS/MS.  相似文献   

9.
Type II diabetes mellitus is a chronic metabolic disorder that can lead to serious cardiovascular, renal, neurologic, and retinal complications. While several drugs are currently prescribed to treat type II diabetes, their efficacy is limited by mechanism-related side effects (weight gain, hypoglycemia, gastrointestinal distress), inadequate efficacy for use as monotherapy, and the development of tolerance to the agents. Consequently, combination therapies are frequently employed to effectively regulate blood glucose levels. We have focused on the mitochondrial sodium-calcium exchanger (mNCE) as a novel target for diabetes drug discovery. We have proposed that inhibition of the mNCE can be used to regulate calcium flux across the mitochondrial membrane, thereby enhancing mitochondrial oxidative metabolism, which in turn enhances glucose-stimulated insulin secretion (GSIS) in the pancreatic beta-cell. In this paper, we report the facile synthesis of benzothiazepines and derivatives by S-alkylation using 2-aminobenzhydrols. The syntheses of other bicyclic analogues based on benzothiazepine, benzothiazecine, benzodiazecine, and benzodiazepine templates are also described. These compounds have been evaluated for their inhibition of mNCE activity, and the results from the structure-activity relationship (SAR) studies are discussed.  相似文献   

10.
The synthesis of a new small library of quinoxaline-containing peptides is described. After cytotoxic evaluation in four human cancer cell lines, as well as detailed biological studies, it was found that the most active compound, RZ2, promotes the formation of acidic compartments, where it accumulates, blocking the progression of autophagy. Further disruption of the mitochondrial membrane potential and an increase in mitochondrial ROS was observed, causing cells to undergo apoptosis. Given its cytotoxic activity and protease-resistant features, RZ2 could be a potential drug candidate for cancer treatment and provide a basis for future research into the crosstalk between autophagy and apoptosis and its relevance in cancer therapy.  相似文献   

11.
Characterization of the oligomerization of membrane-associated peptides is important to understand the folding and function of biomolecules like antimicrobial peptides, fusion peptides, amyloid peptides, toxins, and ion channels. However, this has been considered to be very difficult, because the amphipathic properties of the constituents of the cell membrane pose tremendous challenges to most commonly used biophysical techniques. In this study, we present the application of a simple (14)N solid-state NMR spectroscopy of aligned model membranes containing a phosphatidyl choline lipid to investigate the oligomerization of membrane-associated peptides. Since the near-symmetric nature of the choline headgroup of a phosphocholine lipid considerably reduces the (14)N quadrupole coupling, there are significant practical advantages in using (14)N solid-state NMR experiments to probe the interaction of peptide or protein with the surface of model membranes. Experimental results for several membrane-associated peptides are presented in this paper. Our results suggest that the experimentally measured (14)N quadrupole splitting of the lipid depends on the peptide-induced changes in the electrostatic potential of the lipid bilayer surface and therefore on the nature of the peptide, peptide-membrane interaction, and peptide-peptide interaction. It is inferred that the membrane orientation and oligomerization of the membrane-associated peptides can be measured using (14)N solid-state NMR spectroscopy.  相似文献   

12.
梅隽彦 《广州化学》2020,45(2):64-75
从细胞穿膜肽(CPP)的分类、内化机制、与货物的连接和应用四个方面讲述目前人们在对细胞穿膜肽的研究上已经取得的成果。细胞穿膜肽是一种能穿过细胞膜的短肽,可分为阳离子型肽、两亲性肽和疏水性肽。细胞穿膜肽的内化机制主要有内吞作用、直接渗透、依赖于糖蛋白的内化机制和依赖于浓度的内化机制等。近年来,人们合成了多种有实际应用价值的CPP-货物复合物,在细胞穿膜肽的应用上,取得了很多进展和突破。科学家们主要研究将细胞穿膜肽应用于药物递送和细胞成像。  相似文献   

13.
Cooperative interactions between RNA and vesicle membranes on the prebiotic earth may have led to the emergence of primitive cells. The membrane surface offers a potential platform for the catalysis of reactions involving RNA, but this scenario relies upon the existence of a simple mechanism by which RNA could become associated with protocell membranes. Here, we show that electrostatic interactions provided by short, basic, amphipathic peptides can be harnessed to drive RNA binding to both zwitterionic phospholipid and anionic fatty acid membranes. We show that the association of cationic molecules with phospholipid vesicles can enhance the local positive charge on a membrane and attract RNA polynucleotides. This phenomenon can be reproduced with amphipathic peptides as short as three amino acids. Finally, we show that peptides can cross bilayer membranes to localize encapsulated RNA. This mechanism of polynucleotide confinement could have been important for primitive cellular evolution.  相似文献   

14.
Hemagglutinin from influenza virus A is a S-palmitoylated lipoglycoprotein in which the lipid groups are thought to influence the interaction between cell membrane and capsid during budding of viral offspring as well as fusion processes of the viral membrane with the endosome after entry of the viral particle into the cell. The paper describes the development of a method for the synthesis of characteristic lipidated hemagglutinin derived peptides which additionally carry the fluorescent 7-nitrobenz-2oxa-1,3-diazole (NBD) group. To achieve this goal the enzyme-sensitive para-phenylacetoxybenzyloxycarbonyl (PAOB) ester was developed. It is cleaved from the peptides and lipidated peptides under very mild conditions and with complete selectivity by treatment with the enzyme penicillin G acylase; this results in the formation of a phenolate. This intermediate spontaneously undergoes fragmentation thereby releasing the desired carboxylates. The combined use of this enzyme-labile fragmenting ester with the acid-labile Boc group, the Pd(0)-sensitive allyl ester and the corresponding Aloc urethane gave access to a mono-S-palmitoylated and a doubly S-palmitoylated NBD-labelled hemagglutinin peptide. The binding of these lipopeptides to model membranes was analyzed in a biophysical setup monitoring the transfer of fluorescent-labelled lipopeptide from vesicles containing the non-exchangeable fluorescence quencher Rho-DHPE to quencher-free vesicles. The experiments demonstrate that one lipid group is not sufficient for quasi-irreversible membrane insertion of lipidated peptides. This is, however, achieved by introduction of the bis-palmitoyl anchor. The intervesicle transfer always implies release of peptides localized at the outer face of the vesicles into solution followed by diffusion to and insertion into acceptor vesicles. For peptides bound at the inner face of the vesicle membrane, however, an additional flip-flop diffusion to the outer face has to occur beforehand. The kinetics of these processes were estimated by fast chemical quench of the outside fluorophores by sodium dithionite.  相似文献   

15.
By employing a capillary ITP (CITP)/CZE-based proteomic technology, a total of 1795 distinct mouse Swiss-Prot protein entries (or 1705 nonredundant proteins) are identified from synaptic mitochondria isolated from mouse brain. The ultrahigh resolving power of CITP/CZE is evidenced by the large number of distinct peptide identifications measured from each CITP fraction together with the low peptide fraction overlapping among identified peptides. The degree of peptide overlapping among CITP fractions is even lower than that achieved using combined CIEF/nano-RP LC separations for the analysis of the same mitochondrial sample. When evaluating the protein sequence coverage by the number of distinct peptides mapping to each mitochondrial protein identification, CITP/CZE similarly achieves superior performance with 1041 proteins (58%) having 3 or more distinct peptides, 233 (13%) having 2 distinct peptides, and 521 (29%) having a single distinct peptide. The reproducibility of protein identifications is found to be around 86% by comparing proteins identified from repeated runs of the same mitochondrial sample. The analysis of the mouse mitochondrial proteome by two CITP/CZE runs results in the detection of 2095 distinct mouse Swiss-Prot protein entries (or 1992 nonredundant proteins), corresponding to 59% coverage of the updated Maestro mitochondrial reference set. The collective analysis from combined CITP/CZE and CIEF-based proteomic studies yields the identification of 2191 distinct mitochondrial protein entries (or 2082 nonredundant proteins), corresponding to 76% coverage of the MitoP2-database reference set.  相似文献   

16.
Melanoma is the most dangerous and lethal form of skin cancer, due to its ability to spread to different organs if it is not treated at an early stage. Conventional chemotherapeutics are failing as a result of drug resistance and weak tumor selectivity. Therefore, efforts to evaluate novel molecules for the treatment of skin cancer are necessary. Antimicrobial peptides have become attractive anticancer agents because they execute their biological activity with features such as a high potency of action, a wide range of targets, and high target specificity and selectivity. In the present study, the antiproliferative activity of the synthetic peptide ΔM4 on A375 human melanoma cells and spontaneously immortalized HaCaT human keratinocytes was investigated. The cytotoxic effect of ΔM4 treatment was evaluated through propidium iodide uptake by flow cytometry. The results indicated selective toxicity in A375 cells and, in order to further investigate the mode of action, assays were carried out to evaluate morphological changes, mitochondrial function, and cell cycle progression. The findings indicated that ΔM4 exerts its antitumoral effects by multitarget action, causing cell membrane disruption, a change in the mitochondrial transmembrane potential, an increase of reactive oxygen species, and cell cycle accumulation in S-phase. Further exploration of the peptide may be helpful in the design of novel anticancer peptides.  相似文献   

17.
Due to the emergence of multidrug-resistant pathogens, it is necessary to develop options to fight infections caused by these agents. Lactoferrin (Lf) is a cationic nonheme multifunctional glycoprotein of the innate immune system of mammals that provides numerous benefits. Lf is bacteriostatic and/or bactericidal, can stimulate cell proliferation and differentiation, facilitate iron absorption, improve neural development and cognition, promote bone growth, prevent cancer and exert anti-inflammatory and immunoregulatory effects. Lactoferrin is present in colostrum and milk and is also produced by the secondary granules of polymorphonuclear leukocytes, which store this glycoprotein and release it at sites of infection. Lf is also present in many fluids and exocrine secretions, on the surfaces of the digestive, respiratory and reproductive systems that are commonly exposed to pathogens. Apo-Lf (an iron-free molecule) can be microbiostatic due to its ability to capture ferric iron, blocking the availability of host iron to pathogens. However, apo-Lf is mostly microbicidal via its interaction with the microbial surface, causing membrane damage and altering its permeability function. Lf can inhibit viral entry by binding to cell receptors or viral particles. Lf is also able to counter different important mechanisms evolved by microbial pathogens to infect and invade the host, such as adherence, colonization, invasion, production of biofilms and production of virulence factors such as proteases and toxins. Lf can also cause mitochondrial and caspase-dependent regulated cell death and apoptosis-like in pathogenic yeasts. All of these mechanisms are important targets for treatment with Lf. Holo-Lf (the iron-saturated molecule) can contain up to two ferric ions and can also be microbicidal against some pathogens. On the other hand, lactoferricins (Lfcins) are peptides derived from the N-terminus of Lf that are produced by proteolysis with pepsin under acidic conditions, and they cause similar effects on pathogens to those caused by the parental Lf. Synthetic analog peptides comprising the N-terminus Lf region similarly exhibit potent antimicrobial properties. Importantly, there are no reported pathogens that are resistant to Lf and Lfcins; in addition, Lf and Lfcins have shown a synergistic effect with antimicrobial and antiviral drugs. Due to the Lf properties being microbiostatic, microbicidal, anti-inflammatory and an immune modulator, it represents an excellent natural alternative either alone or as adjuvant in the combat to antibiotic multidrug-resistant bacteria and other pathogens. This review aimed to evaluate the data that appeared in the literature about the effects of Lf and its derived peptides on pathogenic bacteria, protozoa, fungi and viruses and how Lf and Lfcins inhibit the mechanisms developed by these pathogens to cause disease.  相似文献   

18.
Elastin peptides constitute a group of biologically active peptides derived from the fragmentation of insoluble elastin. These molecules, currently termed elastokines, have been shown to interact preferably with the elastin receptor complex. Recent data show that the sialidase activity of the neuraminidase-1 of this receptor is required for these peptides to induce their effects. As lactosylceramide generated at the plasma membrane by desialylation of the ganglioside GM3 can be considered as a second messenger, we feel that this lipidic compound could mimic elastin peptides effects in physiopathological situations.  相似文献   

19.
Selectively targeting the membrane‐perturbing potential of peptides towards a distinct cellular phenotype allows one to target distinct populations of cells. We report the de novo design of a new class of peptide whose ability to perturb cellular membranes is coupled to an enzyme‐mediated shift in the folding potential of the peptide into its bioactive conformation. Cells rich in negatively charged surface components that also highly express alkaline phosphatase, for example many cancers, are susceptible to the action of the peptide. The unfolded, inactive peptide is dephosphorylated, shifting its conformational bias towards cell‐surface‐induced folding to form a facially amphiphilic membrane‐active conformer. The fate of the peptide can be further tuned by peptide concentration to affect either lytic or cell‐penetrating properties, which are useful for selective drug delivery. This is a new design strategy to afford peptides that are selective in their membrane‐perturbing activity.  相似文献   

20.
The mitochondria in the lower Malpighian tubule of the insect Rhodnius prolixus can be stimulated by feeding in vivo and by 5-hydroxytryptamine in vitro, to move from a position below the cell cortex to one inside the apical microvilli. During and following their movement into the microvilli, the mitochondria are intimately associated with the microfilaments of the cell cortex and microvillar core bundle. Bridges approximately 14 nm in length and 4 nm in diameter are observed connecting the microvillar microfilaments to the outer mitochondrial membrane and microvillar plasma membrane. Depolymerization of all visible microtubules with colchicine does not inhibit 5-HT-stimulated mitochondrial movement. On the other hand, treatment with cytochalasin B does block mitochondrial movement, suggesting that microfilaments play a role in the mitochondrial motility. We have labeled the microvillar microfilaments, which are 6 nm in diameter, with heavy meromyosin, which supports the contention that they contain actin. A model of the mechanism of mitochondrial movement is presented in which mitochondria slide into position in the microvilli along actin-containing microfilaments in a manner analogous to the sliding actin-myosin model of skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号