首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supernovae (SNe) are copious sources for Kaluza-Klein (KK) gravitons which are generic for theories with large extra dimensions. These massive particles are produced with average velocities approximately 0.5c so that many of them are gravitationally retained by the SN core. Every neutron star thus has a halo of KK gravitons which decay into nu(nu), e(+)e(-), and gammagamma on time scales approximately 10(9) years. The EGRET gamma-flux limits (E(gamma) approximately 100 MeV) for nearby neutron stars constrain the compactification scale for n = 2 extra dimensions to M > or = 500 TeV, and M > or = 30 TeV for n = 3. The requirement that neutron stars are not excessively heated by KK decays implies M > or = 1700 TeV for n = 2, and M > or = 60 TeV for n = 3.  相似文献   

2.
The thermonuclear explosion of a C/O white dwarf as a Type Ia supernova (SN Ia) generates a kinetic energy comparable to that released by a massive star during a SN II event. Current observations and theoretical models have established that SNe Ia are asymmetric, and therefore--like SNe II--potential sources of gravitational wave (GW) radiation. We perform the first detailed calculations of the GW emission for a SN Ia of any type within the single-degenerate channel. The gravitationally confined detonation (GCD) mechanism predicts a strongly polarized GW burst in the frequency band around 1 Hz. Third-generation spaceborne GW observatories currently in planning may be able to detect this predicted signal from SNe Ia at distances up to 1 Mpc. If observable, GWs may offer a direct probe into the first few seconds of the SNe Ia detonation.  相似文献   

3.
Type Ia supernovae (SNe Ia) play an important role in diverse areas of astrophysics, from the chemical evolution of galaxies to observational cosmology. However, the nature of the progenitors of SNe Ia is still unclear. In this paper, according to a detailed binary population synthesis study, we obtained SN Ia birthrates and delay times from different progenitor models, and compared them with observations. We find that the Galactic SN Ia birthrate from the double-degenerate (DD) model is close to those infe...  相似文献   

4.
It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage–Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This “peculiar acceleration” could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.  相似文献   

5.
A model is presented to explain the luminar distances and associated red-shifts from ancient supernovae. Light frequencies of supernovae type Ia (SNe Ia) vary smoothly with time, decreasing from singularity to present and intergalactic luminar distances are described as linear combinations of Hubble expansion and smaller components from the time-dependent decrease of emission frequencies. When tested with current cosmic matter densities, SNe Ia distances, red-shifts and the Hubble constant the errors between this model and the vacuum energy model favor this new model, though our model suffers from mathematics about zero. An expression between energy and frequency, derived from the model, reducing to the Planck equation for short observation intervals is also discovered and estimated to within 10% using current SNe Ia data. We also propose a relationship for the deceleration of frequency over time, solve at infinity and discover frequency and time will eventually become uncoupled.  相似文献   

6.
There is an apparent tension between cosmological parameters obtained from Planck cosmic microwave background radiation observations and that derived from the observed magnitude-redshift relation for the type Ia supernova(SNe Ia).Here,we show that the tension can be alleviated,if we first calibrate,with the help of the distance-duality relation,the light-curve fitting parameters in the distance estimation in SNe Ia observations with the angular diameter distance data of the galaxy clusters and then re-estimate the distances for the SNe Ia with the corrected fitting parameters.This was used to explore their cosmological implications in the context of the spatially flat cosmology.We find a higher value for the matter density parameter,m,as compared to that from the original SNLS3,which is in agreement with Planck observations at 68.3%confidence.Therefore,the tension between Planck measurements and SNe Ia observations regarding m can be efectively alleviated without invoking new physics or resorting to extensions for the standard concordance model.Moreover,with the absolute magnitude of a fiducial SNe Ia,M,determined first,we obtained a constraint on the Hubble constant with SNLS3 alone,which is also consistent with Planck.  相似文献   

7.
While luminosity distances from type Ia supernovae (SNe) are a powerful probe of cosmology, the accuracy with which these distances can be measured is limited by cosmic magnification due to gravitational lensing by the intervening large-scale structure. Spatial clustering of foreground mass leads to correlated errors in SNe distances. By including the full covariance matrix of SNe, we show that future wide-field surveys will remain largely unaffected by lensing correlations. However, "pencil beam" surveys, and those with narrow (but possibly long) fields of view, can be strongly affected. For a survey with 30 arcmin mean separation between SNe, lensing covariance leads to a approximately 45% increase in the expected errors in dark energy parameters.  相似文献   

8.
With recent advances in theory and observations, direct connections emerge between the progenitors of Type Ia Supernovae (SNe Ia) and the observed light curves and spectra. A direct link is important for our understanding of the supernovae physics, the diversity of SNe Ia and the use of SNe Ia for high-precision cosmology because the details of the explosion depends sensitively on the initial conditions and the explosion scenario(s) realized in nature. Do SNe Ia originate from SD- or DD systems, and do they lead to MCh mass explosions or dynamical mergers? Does the statistical distribtion of SNe Ia depend on their environment which can be expected to change with redshift? In this contribution, we will exam from the theoretical point of view the tell-tails for this connection, their consistency with the observations, and future directions. In a first section, we present the physics of the explosion, light curves and spectral formation in a nutshell to help understanding the connection. For details of the progenitor evolution and explosion physics, we refer to reviews and the other contributions in this issue. Each of the topical sections starts with a brief general review followed by a more detailed discussion of specific results. Because the youth of the field, some bias is unavoidable towards results obtained within our collaborations (and FSU). The imprint of the metallicity, progenitor stars and properties such as the central density of the exploding WD are presented. IR spectroscopy, polarimetry and imaging of SNR remnants are discussed as a tool to test for the WD properties, magnetic fields and asymmetries. We discuss different classes of Type Ia supernovae, and their environment. Possible correlations between the spectroscopic and light curve properties of SN Ia are discussed. Finally, the overall emerging picture and future developments are discussed.  相似文献   

9.
Stars of~8-100 M_⊙end their lives as core-collapse supernovae(SNe). In the process they emit a powerful burst of neutrinos,produce a variety of elements, and leave behind either a neutron star or a black hole. The wide mass range for SN progenitors results in diverse neutrino signals, explosion energies, and nucleosynthesis products. A major mechanism to produce nuclei heavier than iron is rapid neutron capture, or the r process. This process may be connected to SNe in several ways. A brief review is presented on current understanding of neutrino emission, explosion, and nucleosynthesis of SNe.  相似文献   

10.
本文先介绍超新星巡天和分类,简要地论述历史超新星SN 1006一千年,接着讨论核心塌缩超新星物理和具体事例(SN1987A 20年、 SN2006gy、 2008D)及超新星与γ射线暴的联系,文章重点讨论SNIa 和宇宙学,评述了SNIa在宇宙学中的应用和哈勃常数的确定,最后指出超新星研究目前存在的问题。  相似文献   

11.
We confront dark energy models which are currently similar to ΛCDM theory with observational data which include the SNe data, matter density perturbations and baryon acoustic oscillations data. DE cosmology under consideration may evolve to Big Rip, type II or type III future singularity, or to Little Rip or Pseudo-Rip universe. It is shown that matter perturbations data define more precisely the possible deviation from ΛCDM model than consideration of SNe data only. The combined data analysis proves that DE models under consideration are as consistent as ΛCDM model. We demonstrate that growth of matter density perturbations may occur at sufficiently small background density but still before the possible disintegration of bound objects (like clusters of galaxies, galaxies, etc.) in Big Rip, type III singularity, Little Rip or Pseudo-Rip universe. This new effect may bring the future universe to chaotic state well before disintegration or Rip.  相似文献   

12.
A major part of the energy released upon the gravitational collapse of massive-star cores is carried away by neutrinos. Neutrinos play a crucial role in collapsing supernovae (SNe). At the present time, mathematical models of core-collapse SNe are based on multidimensional gas dynamics and thermonuclear reactions, whereas the neutrino transport is frequently treated in simplified way. An accurate analysis of neutrinos in a spherically symmetric gravitational collapse is performed on the basis of Boltzmann kinetic equations including all weak-interaction reactions with exact quantum-mechanical matrix elements. The role of multidimensional effects is studied bymeans of multidimensional gas dynamics allowing for the neutrino transport via diffusion treated by employing flux limiters. The possibility of largescale convection, which is of interest both from the point of view of explaining a type II supernova (SN) and from the point of view of implementing an experiment aimed at detecting possible energetic (?10 MeV) neutrinos from an SN, is discussed. Thermonuclear burning leads to the explosion of a type I SN. A hot central region and the subsequent large-scale convection may also play an important role in the SN mechanism. If neutrinos and convection play a key role for a type II SN, then, in order to explain gamma radiation from product radioactive elements, convection is of importance in the case of SNe belonging to both types. In addition, convection may be important for bright type I SNe. Original methods are presented for multidimensional gas dynamics involving thermonuclear burning and for multitemperature gas dynamics involving radiative transfer.  相似文献   

13.
Abstract

The pulse-echo-overlap method was used to measure the longitudinal and transverse wave velocities in single-crystal (100) and (111) samples of InSb up to 3 GPa at room temperature. The peculiar variations of the elastic constants were observed near the covalent-metallic transition.  相似文献   

14.
Motivated by the fact that calibrated light curves of Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, considerable attention has been given to, both, observations and models of these events over the past 15 years. Here, we summarize new observational constraints, address recent progress in modeling Type Ia supernovae by means of three-dimensional hydrodynamic simulations, and discuss several of the still open questions. It will be be shown that the new models have considerable predictive power which allows us to study observable properties such as light curves and spectra without adjustable non-physical parameters. This is a necessary requisite to improve our understanding of the explosion mechanism and to settle the question of the applicability of SNe Ia as distance indicators for cosmology. We explore the capabilities of the models by comparing them with observations and we show how such models can be applied to study the origin of the diversity of SNe Ia.  相似文献   

15.
We consider disorder-order phase transitions in the three-dimensional version of the scalar noise model (SNM) of flocking. Our results are analogous to those found for the two-dimensional case [CITE]. For small velocity (v≤0.1) a continuous, second-order phase transition is observable, with the diffusion of nearby particles being isotropic. By increasing the particle velocities the phase transition changes to first order, and the diffusion becomes anisotropic. The first-order transition in the latter case is probably caused by the interplay between anisotropic diffusion and periodic boundary conditions, leading to a boundary condition dependent symmetry breaking of the solutions.  相似文献   

16.
Gravitational field equations in Randers-Finsler space of approximate Berwald type are investigated. A modified Friedmann equation and a new luminosity distance-redshift relation is proposed. A best-fit to the Type Ia supernovae (SNe) observations yields that the ΩΛ in the Λ-CDM model is suppressed to almost zero. This fact indicates that the astronomical observations on the Type Ia SNe can be described well without invoking any form of dark energy. The best-fit age of the universe is given. It is in agreement with the age of our galaxy.  相似文献   

17.
We consider the stirring of an inviscid fluid caused by the locomotion of bodies through it. The swimmers are approximated by non-interacting cylinders or spheres moving steadily along straight lines. We find the displacement of fluid particles caused by the nearby passage of a swimmer as a function of an impact parameter. We use this to compute the effective diffusion coefficient from the random walk of a fluid particle under the influence of a distribution of swimming bodies. We compare with the results of simulations. For typical sizes, densities and swimming velocities of schools of krill, the effective diffusivity in this model is five times the thermal diffusivity. However, we estimate that viscosity increases this value by two orders of magnitude.  相似文献   

18.
19.
A variational method for determining the peculiar velocities of galaxies using a catalog of their positions and masses is suggested. The method is based on an approximate reconstruction of the dynamical history of the patch of the Universe covered by the catalog through the optimization of a suitable integral action functional and is an improvement on the method of the Monge-Kantorovich mass transportation problem developed in [1].  相似文献   

20.
Supernova (SN) explosions are one of the most energetic---and potentially lethal---phenomena in the Universe. We show that the Scorpius-Centaurus OB association, a group of young stars currently located at approximately 130 pc from the Sun, has generated 20 SN explosions during the last 11 Myr, some of them probably as close as 40 pc to our planet. The deposition on Earth of (60)Fe atoms produced by these explosions can explain the recent measurements of an excess of this isotope in deep ocean crust samples. We propose that approximately 2 Myr ago, one of the SNe exploded close enough to Earth to seriously damage the ozone layer, provoking or contributing to the Pliocene-Pleistocene boundary marine extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号