首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A drop in the efficiency of nuclear excitation through transitions of high multipolarity is related to the increase in the angular momentum difference between the nuclear states involved in the excitation transition. Such transitions need photons with a high angular momentum. It is well known that photon beams carrying a well-defined and arbitrarily high value of angular momentum about the beam axis can be produced. We discuss some features in the excitation of nuclei with the beams.  相似文献   

2.
We propose a simple method for generation and detection of photons with nonzero angular momentum. The method utilizes high-quality factor ring resonators that transform a plane electromagnetic wave into a wave with nonzero angular momentum, and vice versa. We show that the method is especially promising for studying high-order Bessel beams, unreachable by other techniques.  相似文献   

3.
Enhancement of entanglement is necessary for most quantum communication protocols many of which are defined in Hilbert spaces larger than 2. In this work we present the experimental realization of entanglement concentration of orbital angular momentum entangled photons. We investigate the specific case of three dimensions and the possibility of generating different entangled states out of an initial state. The results presented here are of importance for pure states as well as for mixed states.  相似文献   

4.
A polarized photon with well-defined orbital angular momentum that emerges from a Mach-Zehnder interferometer (MZI) is shown to seemingly circumvent wave-particle duality constraints. For certain phase differences between the MZI arms, this pattern yields both reliable which-path information and high phase sensitivity.  相似文献   

5.
We present a new implementation of the BB84 quantum key distribution (QKD) protocol that employs a d-dimensional Hilbert space spanned by spatial modes of the propagating beam that have a definite value of orbital angular momentum. Each photon carries log d bits of information, increasing the key generation rate of the protocol. The states used in the transmission part of the protocol are invariant under rotations about the propagation direction, making this implementation independent of the alignment between the reference frames of the sender and receiver, and hence appealing for free space QKD. The protocol still works when these reference frames rotate with respect to each other.  相似文献   

6.
DS Ding  ZY Zhou  BS Shi  XB Zou  GC Guo 《Optics letters》2012,37(15):3270-3272
We experimentally demonstrated that infrared light imprinted with orbital angular momentum (OAM) was linearly converted into visible light using four-wave mixing (FWM) via a ladder-type configuration in Rb85 atoms. Simultaneously, we theoretically simulated this linear conversion process, and the theoretical analysis was in reasonable agreement with the experimental results. A large single-photon detuning process was used to reduce the absorption of the atoms to the up-converted light and to avoid pattern formation in the FWM process. The multi-mode image linear conversion process is important for applications including image communications, astrophysics, and quantum information.  相似文献   

7.
A Belmonte  JP Torres 《Optics letters》2012,37(14):2940-2942
A simple optical system for the self-homodyne detection of the orbital angular momentum (OAM) carried by optical beams is introduced. We propose two different schemes based on the use of optical hybrids, which could detect the OAM mode number, even when the input beam might be slightly distorted. A balanced receiver is used to perform a self-homodyne measure of the optical signal from two different locations at the beam wavefront.  相似文献   

8.
Angular momentum, a fundamental physical quantity, can be divided into spin angular momentum(SAM) and orbital angular momentum(OAM) in electromagnetic waves. Helically-phased or twisted light beams carrying OAM that exploit the spatial structure physical dimension of electromagnetic waves have benefited wide applications ranging from optical manipulation to quantum information processing. Using the two distinct properties of OAM, i.e., inherent orthogonality and unbounded states in principle, one can develop OAM modulation and OAM multiplexing techniques for twisted optical communications. OAM multiplexing is an alternative space-division multiplexing approach employing an orthogonal mode basis related to the spatial phase structure. In this paper, we review the recent progress in twisted optical communications using OAM in free space and fiber. The basic concept of momentum, angular momentum, SAM, OAM and OAM-carrying twisted optical communications,key techniques and devices of OAM generation/(de)multiplexing/detection, high-capacity spectrally-efficient free-space OAM links, fiber-based OAM links, and OAM processing functions are presented. Ultra-high spectral efficiency and petabit-scale freespace data links are achieved benefiting from OAM multiplexing. The key techniques and challenges of twisted optical communications are also discussed. Twisted optical communications using OAM are compatible with other existing physical dimensions such as frequency/wavelength, amplitude, phase, polarization and time, opening a possible way to facilitate continuous increase of the aggregate transmission capacity and spectral efficiency through N-dimensional multiplexing.  相似文献   

9.
We propose interferometric methods capable of measuring either the total angular momentum, or simultaneously measuring the spin and orbital angular momentum of single photons. This development enables the measurement of any angular momentum eigenstate of a single photon. The work allows the investigation of single-photon two-qubit entangled states and has implications for high density information transfer.  相似文献   

10.
We present an optical setup for generating a sequence of light pulses in which the orbital angular momentum (OAM) degree of freedom is correlated with the temporal one. The setup is based on a single q plate within a ring optical resonator. By this approach, we demonstrate the generation of a train of pulses carrying increasing values of OAM, or, alternatively, of a controlled temporal sequence of pulses having prescribed OAM superposition states. Finally, we exhibit an "OAM-to-time conversion" apparatus that divides different input OAM states into different time bins. The latter application provides a simple approach to digital spiral spectroscopy of pulsed light.  相似文献   

11.
We predict a new category of optical orbital angular momentum that is associated with the curl of polarization and a kind of vector field with radial-variant hybrid states of polarization that can carry such novel optical orbital angular momentum. We present a scheme for creating the desired vector fields. Optical trapping experiments validate that the vector fields, which have no additional phase vortex, exert torques to drive the orbital motion of the trapped isotropic microspheres.  相似文献   

12.
We derive the consequences of the Myhrer-Thomas explanation of the proton spin problem for the distribution of orbital angular momentum on the valence and sea quarks. After QCD evolution, these results are found to be in very good agreement with both recent lattice QCD calculations and the experimental constraints from Hermes and JLab.  相似文献   

13.
14.
The orbital angular momenta Lu and Ld of up- and down-quarks in the proton are estimated as functions of the energy scale as model independently as possible on the basis of Ji's angular-momentum sum rule. This analysis indicates that L u - L d is large and negative even at the low energy scale of nonperturbative QCD, in contrast to Thomas' similar analysis based on the refined cloudy bag model. We pursuit the origin of this apparent discrepancy and suggest that it may have a connection with the fundamental question of how to define quark orbital angular momenta in QCD.  相似文献   

15.
We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance.  相似文献   

16.
We propose a fiber coupler consisting of a central ring and four external cores to generate up to ten orbital angular momentum (OAM) modes. Four coherent input lights are launched into the external cores and then coupled into the central ring waveguide to generate OAM modes. By changing the size of the external cores, one can selectively excite a high-order OAM mode. The quality of the generated OAM modes can be enhanced by adjusting the polarization state and the phase of input lights. We show the generation of OAM modes with odd charge numbers of -9 to +9 (i.e., 10 modes totally) with mode purity of >99% using <2?mm long fiber. This fiber coupler design can be extended to enable all-fiber spatial-mode (de)multiplexing.  相似文献   

17.
A generalized definition of intrinsic and extrinsic transport coefficients is introduced. We show that transport coefficients from the intrinsic origin are solely determined by local electronic structure, and thus the intrinsic spin Hall effect is not a transport phenomenon. The intrinsic spin Hall current is always accompanied by an equal but opposite intrinsic orbital angular momentum Hall current. We prove that the intrinsic spin Hall effect does not induce a spin accumulation at the edge of the sample or near the interface.  相似文献   

18.
We study the connection between the quark orbital angular momentum and the pretzelosity transverse-momentum dependent parton distribution function. We discuss the origin of this relation in quark models, identifying as key ingredient for its validity the assumption of spherical symmetry for the nucleon in its rest frame. Finally we show that the individual quark contributions to the orbital angular momentum obtained from this relation cannot be interpreted as the intrinsic contributions, but include the contribution from the transverse centre of momentum which cancels out only in the total orbital angular momentum.  相似文献   

19.
Barbosa GA 《Optics letters》2008,33(18):2119-2121
Assuming two quantum states of spontaneous parametric downconversion carrying orbital angular momentum, one may ask the question what is the minimum probability of error in identifying between two of these biphoton states by an arbitrary physical measurement over the biphoton state generated. While correctly chosen geometries may lead to perfect distinguishability of modes, it is worth noticing that experimental subtleties may lead to a poor mode distinguishability. We discuss the case where a restricted range instead of the needed range of wave vectors is collected by the experimental setup. These considerations may be useful for some applications, e.g., cryptography.  相似文献   

20.
We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each input OAM state to a different lateral position. We demonstrate the concept experimentally by using two spatial light modulators to create the desired optical elements, applying it to the separation of eleven OAM states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号