首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motivated by the recent discovery of a quantum Chernoff theorem for asymptotic state discrimination, we investigate the distinguishability of two bipartite mixed states under the constraint of local operations and classical communication (LOCC), in the limit of many copies. While for two pure states a result of Walgate et al. shows that LOCC is just as powerful as global measurements, data hiding states (DiVincenzo et al.) show that locality can impose severe restrictions on the distinguishability of even orthogonal states. Here we determine the optimal error probability and measurement to discriminate many copies of particular data hiding states (extremal d × d Werner states) by a linear programming approach. Surprisingly, the single-copy optimal measurement remains optimal for n copies, in the sense that the best strategy is measuring each copy separately, followed by a simple classical decision rule. We also put a lower bound on the bias with which states can be distinguished by separable operations.  相似文献   

2.
The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a (k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.  相似文献   

3.
The notion of distinguishability between quantum states has shown to be fundamental in the frame of quantum information theory. In this paper we present a new distinguishability criterium by using a information theoretic quantity: the Jensen-Shannon divergence (JSD). This quantity has several interesting properties, both from a conceptual and a formal point of view. Previous to define this distinguishability criterium, we review some of the most frequently used distances defined over quantum mechanics Hilbert space. In this point our main claim is that the JSD can be taken as a unifying distance between quantum states.  相似文献   

4.
We study the total quantum correlation, semiquantum correlation and joint quantum correlation induced by local von Neumann measurement in bipartite system. We analyze the properties of these quantum correlations and obtain analytical formula for pure states. The experimental witness for these quantum correlations is further provided and the significance of these quantum correlations is discussed in the context of local distinguishability of quantum states.  相似文献   

5.
We discuss two qualities of quantum systems: various correlations existing between their subsystems and the distinguishability of different quantum states. This is then applied to analysing quantum information processing. While quantum correlations, or entanglement, are clearly of paramount importance for efficient pure state manipulations, mixed states present a much richer arena and reveal a more subtle interplay between correlations and distinguishability. The current work explores a number of issues related with identifying the important ingredients needed for quantum information processing. We discuss the Deutsch-Jozsa algorithm, the Shor algorithm, the Grover algorithm and the power of a single qubit class of algorithms. In the latter, a quantity called discord is seen to be more important than entanglement. One section is dedicated to cluster states where entanglement is crucial, but its precise role is highly counter-intuitive. Here we see that the notion of distinguishability becomes a more useful concept.  相似文献   

6.
We compare two approaches to non-Markovian quantum evolution: one based on the concept of divisible maps and the other one based on distinguishability of quantum states. The former concept is fully characterized in terms of local generator whereas it is in general not true for the latter one. A simple example of random unitary dynamics of a qubit shows the intricate difference between those approaches. Moreover, in this case both approaches are fully characterized in terms of local decoherence rates.  相似文献   

7.
This paper proves that a set of orthogonal pure states are indistinguishable by restricted local projective measurement and classical communication if the sum of their Schmidt ranks is larger than the dimension of their joint Hilbert space. This result is useful in determining the local distinguishability of quantum states and is stronger in some respects than that of Hayashi et al [Phys. Rev. Lett. 96, 040501]. In addition, it presents a new method to determine the local distinguishability of orthogonal states by projecting measurement operators into their subspaces.  相似文献   

8.
Uniformities describing the distinguishability of states and of observables are discussed in the context of general statistical theories and are shown to be related to distinguished subspaces of continuous observables and states, respectively. The usual formalism of quantum mechanics contains no such physical uniformity for states. Using recently developed tools of quantum harmonic analysis, a natural one-to-one correspondence between continuous subspaces of nonrelativistic quantum and classical mechanics is established, thus exhibiting a close interrelation between physical uniformities for quantum states and compactifications of phase space. General properties of the completions of the quantum state space with respect to these uniformities are discussed.  相似文献   

9.
We study the influence of geometry of quantum systems underlying space of states on its quantum many-body dynamics. We observe an interplay between dynamical and topological ingredients of quantum nonequilibrium dynamics revealed by the geometrical structure of the quantum space of states. As a primary example we use the anisotropic XY ring in a transverse magnetic field with an additional time-dependent flux. In particular, if the flux insertion is slow, nonadiabatic transitions in the dynamics are dominated by the dynamical phase. In the opposite limit geometric phase strongly affects transition probabilities. This interplay can lead to a nonequilibrium phase transition between these two regimes. We also analyze the effect of geometric phase on defect generation during crossing a quantum-critical point.  相似文献   

10.
We have proposed a quantum system with equally-distant partially-entangled alphabet states which has the minimal mutual overlap and the highly distinguishability,these quantum states are used as the “signal states” of the quantum communication.We have also constructed the positive operator-valued measure for these “signal states” and discussed their entanglement properties and measurement of cntanglement.We calculate the accessible information for these alphabet states and show that the accessible information is closely related to the entanglement of the “signal states”:the higher the entanglement of the “signal states”,the better the accessible information of the quantum system,and the accessible information reaches its maximal value when the alphabet states have their maximal entanglement.  相似文献   

11.
We consider the manipulation of multipartite entangled states in the limit of many copies under quantum operations that asymptotically cannot generate entanglement. In stark contrast to the manipulation of entanglement under local operations and classical communication, the entanglement shared by two or more parties can be reversibly interconverted in this setting. The unique entanglement measure is identified as the regularized relative entropy of entanglement, which is shown to be equal to a regularized and smoothed version of the logarithmic robustness of entanglement. Here we give a rigorous proof of this result, which is fundamentally based on a certain recent extension of quantum Stein’s Lemma, giving the best measurement strategy for discriminating several copies of an entangled state from an arbitrary sequence of non-entangled states, with an optimal distinguishability rate equal to the regularized relative entropy of entanglement. We moreover analyse the connection of our approach to axiomatic formulations of the second law of thermodynamics.  相似文献   

12.
The on‐chip integration of quantum light sources has enabled the realization of complex quantum photonic circuits. However, for the practical implementation of such circuits in quantum information applications, it is crucial to develop sources delivering entangled quantum photon states with on‐demand tunability. Here we propose and experimentally demonstrate the concept of a widely tunable quantum light source based on spontaneous parametric down‐conversion in a simple nonlinear directional coupler. We show that spatial photon‐pair correlations and entanglement can be reconfigured on‐demand by tuning the phase difference between the pump beams and the phase mismatch inside the structure. We experimentally demonstrate the generation of split states, robust N00N states, various intermediate regimes and biphoton steering on a single chip. Furthermore we theoretically investigate other regimes allowing all‐optically tunable generation of all Bell states and flexible control of path‐energy entanglement. Such wide‐range capabilities of a structure comprised of just two coupled nonlinear waveguides are attributed to the intricate interplay between linear coupling and nonlinear phase matching. This scheme provides an important advance towards the realization of reconfigurable quantum circuitry.

  相似文献   


13.
In nonlinear voter models the transitions between two states depend in a nonlinear manner on the frequencies of these states in the neighborhood. We investigate the role of these nonlinearities on the global outcome of the dynamics for a homogeneous network where each node is connected to m = 4 neighbors. The paper unfolds in two directions. We first develop a general stochastic framework for frequency dependent processes from which we derive the macroscopic dynamics for key variables, such as global frequencies and correlations. Explicit expressions for both the mean-field limit and the pair approximation are obtained. We then apply these equations to determine a phase diagram in the parameter space that distinguishes between different dynamic regimes. The pair approximation allows us to identify three regimes for nonlinear voter models: (i) complete invasion; (ii) random coexistence; and – most interestingly – (iii) correlated coexistence. These findings are contrasted with predictions from the mean-field phase diagram and are confirmed by extensive computer simulations of the microscopic dynamics.  相似文献   

14.
It is well known that orthogonal quantum states can be distinguished perfectly. However, if we assume that these orthogonal quantum states are shared by spatially separated parties, the distinguishability of these shared quantum states may be completely different. We show that a set of linearly independent quantum states [formula: see text] where U(m,n) are generalized Pauli matrices, cannot be discriminated deterministically or probabilistically by local operations and classical communication. On the other hand, any l maximally entangled states from this set are locally distinguishable if l(l-1)< or =2d. The explicit projecting measurements are obtained to locally discriminate these states. As an example, we show that four Werner states are locally indistinguishable.  相似文献   

15.
Barbosa GA 《Optics letters》2008,33(18):2119-2121
Assuming two quantum states of spontaneous parametric downconversion carrying orbital angular momentum, one may ask the question what is the minimum probability of error in identifying between two of these biphoton states by an arbitrary physical measurement over the biphoton state generated. While correctly chosen geometries may lead to perfect distinguishability of modes, it is worth noticing that experimental subtleties may lead to a poor mode distinguishability. We discuss the case where a restricted range instead of the needed range of wave vectors is collected by the experimental setup. These considerations may be useful for some applications, e.g., cryptography.  相似文献   

16.
An Ergodic Theorem for the Quantum Relative Entropy   总被引:1,自引:1,他引:0  
We prove the ergodic version of the quantum Steins lemma which was conjectured by Hiai and Petz. The result provides an operational and statistical interpretation of the quantum relative entropy as a statistical measure of distinguishability, and contains as a special case the quantum version of the Shannon-McMillan theorem for ergodic states. A version of the quantum relative Asymptotic Equipartition Property (AEP) is given.  相似文献   

17.
基于非正交态的量子密钥验证方案   总被引:1,自引:0,他引:1       下载免费PDF全文
曾贵华  诸鸿文 《物理学报》2002,51(4):727-730
研究了量子密钥分发的验证问题,并利用非正交量子态设计了一个协议,该协议既能分发量子密钥,又能验证所分发的量子密钥的真实性,从而防止了以往所提出协议中可能存在的假冒问题 关键词: 量子密钥验证 量子密码 量子物理 密码学  相似文献   

18.
We consider a quantum system subject to superselection rules, for which certain restrictions apply to the quantum operations that can be implemented. It is shown how the notion of quantum nonlocality has to be redefined in the presence of superselection rules: there exist separable states that cannot be prepared locally and exhibit some form of nonlocality. Moreover, the notion of local distinguishability in the presence of classical communication has to be altered. This can be used to perform quantum information tasks that are otherwise impossible. In particular, this leads to the introduction of perfect quantum data hiding protocols, for which quantum communication (eventually in the form of a separable but nonlocal state) is needed to unlock the secret.  相似文献   

19.
Non-Hermitian systems as theoretical models of open or dissipative systems exhibit rich novel physical properties and fundamental issues in condensed matter physics. We propose a generalized local–global correspondence between the pseudo-boundary states in the complex energy plane and topological invariants of quantum states. We find that the patterns of the pseudo-boundary states in the complex energy plane mapped to the Brillouin zone are topological invariants against the parameter deformation. We demonstrate this approach by the non-Hermitian Chern insulator model. We give the consistent topological phases obtained from the Chern number and vorticity. We also find some novel topological invariants embedded in the topological phases of the Chern insulator model, which enrich the phase diagram of the non-Hermitian Chern insulators model beyond that predicted by the Chern number and vorticity. We also propose a generalized vorticity and its flipping index to understand physics behind this novel local–global correspondence and discuss the relationships between the local–global correspondence and the Chern number as well as the transformation between the Brillouin zone and the complex energy plane. These novel approaches provide insights to how topological invariants may be obtained from local information as well as the global property of quantum states, which is expected to be applicable in more generic non-Hermitian systems.  相似文献   

20.
黄馨瑶  项玉  孙风潇  何琼毅  龚旗煌 《物理学报》2015,64(16):160304-160304
在玻色-爱因斯坦凝聚体中实现自旋压缩和量子纠缠, 对于提高原子干涉测量相位灵敏度和原子钟精度有着非常重要的意义. 基于一种新的平面自旋分量的不确定性关系, 介绍了如何利用两分量玻色-爱因斯坦凝聚系统中原子间相互作用提供的非线性效应和原子内部能级间线性耦合, 实现量子平面自旋压缩(挤压)和模式纠缠. 描述了一项关于平面压缩态的理论工作, 该工作利用哈密顿量的精确对角化求解系统基态, 优化非线性作用和线性耦合强度比值, 使得包含平均自旋方向在内的两个正交自旋分量的不确定度同时压缩, 因此在平面上所有相位角度的涨落都受到压制, 而在与该平面垂直的第三个自旋分量方向反压缩. 利用传统自旋压缩判定纠缠, 只能判断多个不可分辨的原子处于纠缠态, 而平面自旋压缩可以检测两个可区分模式(比如, 原子内态)间的纠缠, 从而在不同模式间进行量子信息处理. 同时, 为实现超越标准量子极限的原子干涉相位精密测量, 传统方式是利用单个自旋分量压缩, 但需要对待测相位角度有很好的估计, 或者可以进行多次测量以逐渐逼近可获得的最大压缩极限, 这就要求量子态可以被精确的重复制备. 而利用平面自旋压缩, 对任意未知相位角度只需要测量两个垂直自旋分量就可以实现高的相位测量灵敏度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号