首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the line shape and frequency of the G band Raman modes in individual metallic single walled carbon nanotubes (M-SWNTs) as a function of Fermi level (epsilonF) position, by tuning a polymer electrolyte gate. Our study focuses on the data from M-SWNTs where explicit assignment of the G- and G+ peaks can be made. The frequency and line shape of the G- peak in the Raman spectrum of M-SWNTs is very sensitive to the position of the Fermi level. Within +/- variant Planck's over 2piomega/2 (where variant Planck's over 2piomega is the phonon energy) around the band crossing point, the G- mode is softened and broadened. In contrast, as the Fermi level is tuned away from the band crossing point, a semiconductinglike G band line shape is recovered both in terms of frequency and linewidth. Our results confirm the predicted softening of the A-symmetry LO phonon mode frequency due to a Kohn anomaly in M-SWNTs.  相似文献   

2.
A strongly correlated Fermi system plays a fundamental role in very different areas of physics, from neutron stars, quark–gluon plasmas, to high temperature superconductors. Despite the broad applicability, it is notoriously difficult to be understood theoretically because of the absence of a small interaction parameter. Recent achievements of ultracold trapped Fermi atoms near a Feshbach resonance have ushered in enormous changes. The unprecedented control of interaction, geometry and purity in these novel systems has led to many exciting experimental results, which are to be urgently understood at both low and finite temperatures. Here we review the latest developments of virial expansion for a strongly correlated Fermi gas and their applications on ultracold trapped Fermi atoms. We show remarkable, quantitative agreements between virial predictions and various recent experimental measurements at about the Fermi degenerate temperature. For equations of state, we discuss a practical way of determining high-order virial coefficients and use it to calculate accurately the long-sought third-order virial coefficient, which is now verified firmly in experiments at ENS and MIT. We discuss also virial expansion of a new many-body parameter—Tan’s contact. We then turn to less widely discussed issues of dynamical properties. For dynamic structure factors, the virial prediction agrees well with the measurement at the Swinburne University of Technology. For single-particle spectral functions, we show that the expansion up to the second order accounts for the main feature of momentum-resolved rf-spectroscopy for a resonantly interacting Fermi gas, as recently reported by JILA. In the near future, more practical applications with virial expansion are possible, owing to the ever-growing power in computation.  相似文献   

3.
The unitarity regime of the BCS-BEC crossover can be realized by diluting a system of two-component lattice fermions with an on-site attractive interaction. We perform a systematic-error-free finite-temperature simulation of this system by diagrammatic determinant Monte Carlo method. The critical temperature in units of Fermi energy is found to be T(C)/epsilonF=0.152(7). We also report the behavior of the thermodynamic functions, and discuss the issues of thermometry of ultracold Fermi gases.  相似文献   

4.
Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T(c), and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T(c).  相似文献   

5.
From the unified statistical thermodynamics of quantum gases, the virial coefficients of ideal Bose and Fermi gases, trapped under generic power law potential are derived systematically. From the general result of virial coefficients, one can produce the known results in d=3 and d=2. But more importantly we found that, the virial coefficients of Bose and Fermi gases become identical (except the second virial coefficient, where the sign is different) when the gases are trapped under harmonic potential in d=1. This result suggests the equivalence between Bose and Fermi gases established in d=1 (J. Stat. Phys. DOI 10.1007/s10955-015-1344-4). Also, it is found that the virial coefficients of two-dimensional free Bose (Fermi) gas are equal to the virial coefficients of one-dimensional harmonically trapped Bose (Fermi) gas.  相似文献   

6.
Trapped noninteracting Fermi gas in an external gravitational field in Newtonian approximation is considered. Analytical equations for chemical potential, internal energy, and specific heat of trapped Fermi gas are computed. The spatial distribution of completely degenerate fermions in nonhomogeneous gravitational field is calculated. The effects of the influence of gravitational field on Fermi gas are discussed.  相似文献   

7.
硬球势中相对论费米气体的热力学性质   总被引:1,自引:0,他引:1       下载免费PDF全文
范召兰  门福殿  窦瑞波 《物理学报》2010,59(6):3715-3719
用量子统计与数值模拟相结合的方法,在广义外势中相对论费米系统的热力学量的基础上,研究硬球势中相对论费米气体的热力学性质.得到了考虑相对论效应时系统的内能和热容量的解析表达式,分析了相对论效应对内能和热容量的影响.研究表明:与非相对论比较,相对论费米气体的内能和热容量更高;相对论特征量越大,热容量的转折温度越低;随着温度的升高,特征量越大,内能就越大.  相似文献   

8.
We observe collective oscillations of a trapped, degenerate Fermi gas of 6Li atoms at a magnetic field just above a Feshbach resonance, where the two-body physics does not support a bound state. The gas exhibits a radial breathing mode at a frequency of 2837(05) Hz, in excellent agreement with the frequency of nu(H) identical with sqrt[10nu(x)nu(y)/3]=2830(20) Hz predicted for a hydrodynamic Fermi gas with unitarity-limited interactions. The measured damping times and frequencies are inconsistent with predictions for both the collisionless mean field regime and for collisional hydrodynamics. These observations provide the first evidence for superfluid hydrodynamics in a resonantly interacting Fermi gas.  相似文献   

9.
We consider the low energy collective monopole modes of a trapped weakly interacting atomic Fermi gas in the collisionless regime. The spectrum is calculated for varying coupling strength and chemical potential. Using an effective Hamiltonian, we derive analytical results that agree well with numerical calculations in various regimes. The onset of superfluidity is shown to lead to effects such as the vanishing of the energy required to create a Cooper molecule at a critical coupling strength and to the emergence of pair vibration excitations. Our analysis suggests ways to experimentally detect the presence of the superfluid phase in trapped atomic Fermi gases.  相似文献   

10.
We investigate collective excitations of a harmonically trapped two-dimensional Fermi gas from the collisionless (zero sound) to the hydrodynamic (first sound) regime. The breathing mode, which is sensitive to the equation of state, is observed with an undamped amplitude at a frequency 2 times the dipole mode frequency for a large range of interaction strengths and different temperatures. This provides evidence for a dynamical SO(2,1) scaling symmetry of the two-dimensional Fermi gas. Moreover, we investigate the quadrupole mode to measure the shear viscosity of the two-dimensional gas and study its temperature dependence.  相似文献   

11.
We discuss the unitary Fermi gas made of dilute and ultracold atoms with an infinite s-wave inter-atomic scattering length. First we introduce an efficient Thomas–Fermi–von Weizsacker density functional which describes accurately various static properties of the unitary Fermi gas trapped by an external potential. Then, the sound velocity and the collective frequencies of oscillations in a harmonic trap are derived from extended superfluid hydrodynamic equations which are the Euler–Lagrange equations of a Thomas–Fermi–von Weizsacker action functional. Finally, we show that this amazing Fermi gas supports supersonic and subsonic shock waves.  相似文献   

12.
《Physics letters. A》2001,286(1):25-29
Trapped non-interacting Fermi gas in an external gravitational field in Newtonian approximation is considered. Analytical equations for the internal energy, the number of particles are computed. The analytical expression for the specific heat of trapped Fermi gas in non-homogeneous gravitational field is found.  相似文献   

13.
弱相互作用费米气体的热力学性质   总被引:10,自引:0,他引:10       下载免费PDF全文
苏国珍  陈丽璇 《物理学报》2004,53(4):984-990
根据赝势法导出无外势时弱相互作用费米气体的化学势、内能和定容热容的解析表达式.在此基础上,采用局域密度近似研究谐振势中弱相互作用费米气体的热力学性质,探讨粒子间相互作用对系统性质的影响. 关键词: 费米气体 相互作用 赝势法 局域密度近似 热力学性质  相似文献   

14.
We consider a trapped unbalanced Fermi gas at nonzero temperatures where the superfluid Sarma phase is stable. We determine, in particular, the phase boundaries between the superfluid, normal, and phase-separated regions of the trapped unbalanced Fermi mixture. We show that the physics of the Sarma phase is sufficient to understand the recent observations of Zwierlein et al. [Science 311, 492 (2006); Nature (London) 442, 54 (2006)] and indicate how the apparent contradictions between this experiment and the experiment of Partridge et al. [Science 311, 503 (2006)] may be resolved.  相似文献   

15.
We present an explicit analytical analysis of the ground state of vortex lattice structure, based on a minimization of the generalized Gross–Pitaevskii energy functional in a trapped rotating Fermi superfluid gas. By a Bogoliubov-like transformation we find that the coarse-grained average of the atomic density varies as inverted parabola in three dimensional cases; the Fermi superfluid in the BEC regime enters into the lowest Landau level at fast rotation, in which the vortices form an almost regular triangular lattice over a central region and the vortex lattice is expanded along the radial direction in the outer region; the fluid in the unitarity and BCS regimes occupies many low-lying Landau levels, in which a trapped gas with a triangular vortex lattice has a superfluid core surrounded by a normal gas. The calculation is qualitatively consistent with recent numerical and experimental data both in the vortex lattice structure and vortex numbers and in the density profiles versus the stirring frequency in the whole BCS–BEC crossover.  相似文献   

16.
Spectral narrowing of the coherent Rayleigh scattering line shape in a room temperature CO(2) gas (2.5 x 10(23) m(-3)) with intense fields in the 10(15) W m(-2) range is observed. The line shape saturates to a width of approximately half that observed at low pump intensities and indicates a transition from scattering primarily from untrapped molecules to that from both trapped and untrapped molecules that are localized by the deep (60 K) optical potentials produced by the pump beams. At higher densities (5 x 10(24) m(-3)), collisions between the trapped and untrapped molecules broaden the spectral profile.  相似文献   

17.
Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=Σ_(i=1)~d c_i|x_i/a_i|~(n_i) has been calculated in arbitrary dimensions.Energy fluctuation is scrutinized further in the degenerate limit μK_B T with the help of Sommerfeld expansion.The dependence of energy fluctuation on dimensionality and power law potential is studied in detail.Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d =3 but also can describe the outcome for any power law potential in arbitrary dimension.  相似文献   

18.
《Molecular physics》2012,110(19-20):2337-2342
We discuss the model of a D-dimensional confined electron gas in which the particles are trapped by a harmonic potential. In particular, we study the non-interacting kinetic and exchange energies of finite-size inhomogeneous systems, and compare the resulting Thomas–Fermi and Dirac coefficients with various uniform electron gas paradigms. We show that, in the thermodynamic limit, the properties of this model are identical to those of the D-dimensional Fermi gas.  相似文献   

19.
本文考虑了分子振动非谐性所引起的振动能级之间的费米共振相互作用,利用定态微扰论,从理论上系统地分析了两态和三态之间的费米共振相互作用对能级能量、态函数和谱线强度的影响,在三阶非谐性近似下,得到了计及费米共振相互作用在内的能级能量、态函数和谱线强度的数学解析表达式.  相似文献   

20.
We study a rotating atomic Fermi gas near a narrow s-wave Feshbach resonance in a uniaxial trap with frequencies Omega perpendicular, Omega z. We predict the upper-critical angular velocity, omega c2(delta,T), as a function of temperature T and detuning delta across the BEC-BCS crossover. The suppression of superfluidity at omega c2 is distinct in the BCS and BEC regimes, with the former controlled by depairing and the latter by the dilution of bosonic molecules. At low T and Omega z < Omega perpendicular, in the BCS and crossover regimes of 0 less similar delta less similar delta c, omega c2 is implicitly given by [formula: see text], vanishing as omega c2 approximately Omega perpendicular(1 - delta/delta c)(1/2) near [formula: see text] (with Delta the BCS gap and gamma the resonance width), and extending the bulk result variant Planck's over 2pi omega c2 approximately 2Delta2/epsilonF to a trap. In the BEC regime of delta < 0 we find omega c2-->Omega perpendicular-, where molecular superfluidity is destroyed only by large quantum fluctuations associated with comparable boson and vortex densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号