首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 726 毫秒
1.
We calculate conductance of an Aharonov-Bohm (AB) interferometer for which a single-level quantum dot in the Coulomb blockade regime is embedded in one of its arms. Using the Schr?dinger equations and taking into account the Coulomb interaction on the dot, we calculate conductance G as a function of flux φ threaded through the ring and as a function of gate voltage V applied to the dot. It is found that the AB oscillations of G(φ) depend on the particle occupation on the dot, controlled by V. If the system is closed, there is no loss of particles, G(φ) is periodic and G(φ)=G(-φ), satisfying the Onsager relation. In this case G(φ) can reach its maximum value, 2e^2/h, at the resonance. When the system is open, one has G(φ)≠G(-φ), G(φ) yields a phase shift which depends on the loss rate of electrons in this open system.  相似文献   

2.
Inviscid, irrotational flow through fractal porous materials is studied. The key parameter is the variation of tortuosity with the filling fraction phi of fluid in the porous material. Altering the filling fraction provides a way of probing the effect of the fractal structure over all its length scales. The variation of tortuosity with phi is found to follow a power law of the form alpha approximately phi (-E) for deterministic and stochastic fractals in two and three dimensions. A phenomenological argument for the scaling of tortuosity alpha with filling fraction phi is presented and is given by alpha approximately phi(D_{w}-2/D_{f}-d_{E}), where D_{f} is the fractal dimension, D_{w} is the random walk dimension, and d_{E} is the Euclidean dimension. Numerically calculated values of the exponents show good agreement with those predicted from the phenomenological argument for both the saturated and the unsaturated model.  相似文献   

3.
Theories of evolving quintessence are constructed that generically lead to deviations from the w = -1 prediction of nonevolving dark energy. The small mass scale that governs evolution, m(phi) approximately = 10(-33) eV, is radiatively stable, and the "Why now?" problem is solved. These results rest on seesaw cosmology: Fundamental physics and cosmology can be broadly understood from only two mass scales, the weak scale nu and the Planck scale M. Requiring a scale of dark energy rho(DE)(1/4) governed by nu2/M and a radiatively stable evolution rate m(phi) given by nu4/M3 leads to a distinctive form for the equation of state w(z). Dark energy resides in the potential of a hidden axion field that is generated by a new QCD-like force that gets strong at the scale lambda approximately = nu2/M approximately = rho(DE)(1/4). The evolution rate is given by a second seesaw that leads to the axion mass m(phi) approximately = lambda2/f, with f approximately = M.  相似文献   

4.
We report our transport studies in quasi-one-dimensional (1D) conductors-helical polyacetylene fibers doped with iodine-and the data analysis for other polymer single fibers and tubes. We found that at 30 K相似文献   

5.
We show that the inclusion of a term C abcd C abcd in the action can remove the recently described anisotropic singularity occurring on the hypersurface F () = 0 of scalar-tensor theories of gravity of the type
preserving, by construction, all of their isotropic solutions. We show that, in principle, a higher order term of this type can arise from considerations about the renormalizability of the semiclassical approach to the theory. Such result brings again into consideration the quintessential models recently proposed based in a conformally coupled scalar field with potential , that have been discharged as unrealistic precisely by their anisotropic instabilities on the hypersurface F () = 0.  相似文献   

6.
We describe azimuthal light scattering spectroscopy (phi/LSS), a novel technique for assessing epithelial-cell nuclear morphology. The difference between the spectra measured at azimuthal angles phi = 0 degrees and phi = 90 degrees preferentially isolates the single backscattering contribution due to large (approximately 10 microm) structures such as epithelial cell nuclei by discriminating against scattering from smaller organelles and diffusive background. We demonstrate the feasibility of using phi/LSS for cancer detection by showing that spectra from cancerous colon tissue exhibit significantly greater azimuthal asymmetry than spectra from normal colonic tissues.  相似文献   

7.
We investigate the decays D(0)-->pi(-)l(+)nu and D(0)-->K(-)l(+)nu, where l is e or mu, using approximately 7 fb(-1) of data collected with the CLEO III detector. We find R(0) identical with B(D(0)-->pi(-)e(+)nu)/B(D(0)-->K(-)e(+)nu)=0.082+/-0.006+/-0.005. Fits to the kinematic distributions of the data provide parameters describing the form factor of each mode. Combining the form factor results and R(0) gives |f(pi)(+)(0)|(2)|V(cd)|(2)/|f(K)(+)(0)|(2)|V(cs)|(2)=0.038(+0.006+0.005)(-0.007-0.003).  相似文献   

8.
We measure the number Omega(phi) of mechanically stable states of volume fraction phi of a granular assembly under gravity. The granular entropy S(phi)=logOmega(phi) vanishes both at high density, at phi approximately equal to phi_rcp, and a low density, at phi approximately equal to phi_rvlp, where phi_rvlp is a new lower bound we call random very loose pack. phi_rlp is the volume fraction where the entropy is maximal. These findings allow for a clear explanation of compaction experiments and provide the first first-principle definition of the random loose volume fraction. In the context of the statistical mechanics approach to static granular materials, states with phi相似文献   

9.
If the potential of a scalar field phi which currently provides the "dark energy" of the Universe has a minimum at phi = -M(0)(4)<0, then quantum-mechanical fluctuations could nucleate a bubble of phi at a negative value of the potential. This bubble would then expand at the speed of light. Given that no such bubble enveloped us in the past, we find that any minimum in V(phi) must be separated from the current phi value by more than min[1.5M(0),0.21M(Pl)], where M(Pl) is the Planck mass. We also show that vacuum decay renders a cyclic or ekpyrotic universe with M(0)(4) > or approximately 10(-10)M(4)(Pl) untenable.  相似文献   

10.
In this work we study the semileptonic decay of ${\bar{B}}_{s}^{0}\to \phi {l}^{+}{l}^{-}$ (l=e, μ, τ) with the QCD sum rule method. We calculate the ${\bar{B}}_{s}^{0}\to \phi $ translation form factors relevant to this semileptonic decay, then the branching ratios of ${\bar{B}}_{s}^{0}\to \phi {l}^{+}{l}^{-}$ (l=e, μ, τ) decays are calculated with the form factors obtained here. Our result for the branching ratio of ${\bar{B}}_{s}^{0}\to \phi {\mu }^{+}{\mu }^{-}$ agree very well with the recent experimental data. For the unmeasured decay modes such as ${\bar{B}}_{s}^{0}\to \phi {e}^{+}{e}^{-}$ and ${\bar{B}}_{s}^{0}\to \phi {\tau }^{+}{\tau }^{-}$, we give theoretical predictions.  相似文献   

11.
We derive the optimal N-photon two-mode input state for obtaining an estimate straight phi of the phase difference between two arms of an interferometer. For an optimal measurement [B. C. Sanders and G. J. Milburn, Phys. Rev. Lett. 75, 2944 (1995)], it yields a variance (Deltastraight phi)(2) approximately pi(2)/N2, compared to O(N-1) or O(N-1/2) for states considered by previous authors. Such a measurement cannot be realized by counting photons in the interferometer outputs. However, we introduce an adaptive measurement scheme that can be thus realized, and show that it yields a variance in straight phi very close to that from an optimal measurement.  相似文献   

12.
Cho JH  Law BM 《Physical review letters》2001,86(10):2070-2073
We study critical adsorption in the small surface field (h(1)) limit using a homologous series of critical liquid mixtures. The experiment data, in the one-phase regime, is accurately described by a universal surface scaling function G+(z/xi(+),z/l(h)) at distance z from the interface with correlation length xi(+) and surface field length l(h) approximately absolute value of (h(1))(-nu/Delta(1)), where h(1) approximately Deltasigma, the surface energy difference between the two components.  相似文献   

13.
We consider perturbations of a massless Gaussian lattice field on ? d ,d≧3, which preserves the continuous symmetry of the Hamiltonian, e.g., $$ - H = \sum\limits_{< x,y > } {(\phi _x - \phi _y )^2 + T(\phi _x - \phi _y )^4 ,\phi _x \in \mathbb{R}.} $$ It is known that for allT>0 the correlation functions in this model do not decay exponentially. We derive a power law upper bound for all (truncated) correlation functions. Our method is based on a combination of the log concavity inequalities of Brascamp and Lieb, reflection positivity and the Fortuin, Kasteleyn and Ginibre (F.K.G.) inequalities.  相似文献   

14.
We investigate weak localization in metallic networks etched in a two-dimensional electron gas between 25 and 750 mK when electron-electron (e-e) interaction is the dominant phase breaking mechanism. We show that, at the highest temperatures, the contributions arising from trajectories that wind around the rings and trajectories that do not are governed by two different length scales. This is achieved by analyzing separately the envelope and the oscillating part of the magnetoconductance. For T > or approximately 0.3 K we find L phi env proportional T(-1/3) for the envelope and L phi osc proportional, T(-1/2) for the oscillations, in agreement with the prediction for a single ring [T. Ludwig and A. D. Mirlin, Phys. Rev. B 69, 193306 (2004); 10.1103/PhysRevB.69.193306C. Texier and G. Montambaux, Phys. Rev. B 72, 115327 (2005); 10.1103/PhysRevB.72.115327C. Texier, Phys. Rev. B76, 153312 (2007)10.1103/PhysRevB.76.153312]. This is the first experimental confirmation of the geometry dependence of decoherence due to e-e interaction.  相似文献   

15.
After surveying the experimental evidence for concentration coupling in the shear banding of wormlike micellar surfactant systems, we present flow phase diagrams spanned by shear stress Σ (or strain rate ) and concentration, calculated within the two-fluid, non-local Johnson-Segalman (d-JS-φ) model. We also give results for the macroscopic flow curves Σ(ˉ,ˉφ) for a range of (average) concentrations ˉφ. For any concentration that is high enough to give shear banding, the flow curve shows the usual non-analytic kink at the onset of banding, followed by a coexistence “plateau” that slopes upwards, dΣ/dˉ > 0. As the concentration is reduced, the width of the coexistence regime diminishes and eventually terminates at a non-equilibrium critical point [Σc,ˉφcc]. We outline the way in which the flow phase diagram can be reconstructed from a family of such flow curves, Σ(ˉ,ˉφ), measured for several different values of ˉφ. This reconstruction could be used to check new measurements of concentration differences between the coexisting bands. Our d-JS-φ model contains two different spatial gradient terms that describe the interface between the shear bands. The first is in the viscoelastic constitutive equation, with a characteristic (mesh) length l. The second is in the (generalised) Cahn-Hilliard equation, with the characteristic length ξ for equilibrium concentration-fluctuations. We show that the phase diagrams (and so also the flow curves) depend on the ratio rl /ξ, with loss of unique state selection at r = 0. We also give results for the full shear-banded profiles, and study the divergence of the interfacial width (relative to l and ξ) at the critical point. Received: 20 December 2002 / Accepted: 24 April 2003 / Published online: 11 June 2003 RID="a" ID="a"e-mail: physf@irc.leeds.ac.uk RID="b" ID="b"e-mail: p.d.olmsted@leeds.ac.uk  相似文献   

16.
Recent research has revealed several different techniques for nanoscopic gas nucleation on submerged surfaces, with findings seemingly in contradiction with each other. In response to this, we have systematically investigated the occurrence of surface nanobubbles on a hydrophobized silicon substrate for various different liquid temperatures and gas concentrations, which we controlled independently. We found that nanobubbles occupy a distinct region of this parameter space, occurring for gas concentrations of approximately 100%-110%. Below the nanobubble region we did not detect any gaseous formations on the substrate, whereas micropancakes (micron wide, nanometer high gaseous domains) were found at higher temperatures and gas concentrations. We moreover find that supersaturation of dissolved gases is not a requirement for nucleation of bubbles.  相似文献   

17.
We demonstrate that the gravity wave background amplitude implies a robust upper bound on the wavelength-to-horizon ratio at the end of inflation: lambda/H(-1) less than or approximately equal e(60), as long as the cosmic energy density does not drop faster than radiation subsequent to inflation. This limit implies that N, the number of e-folds between horizon exit and the end of inflation for wave modes of interest, is less, similar 60 plus a model-dependent factor-for vast classes of slow-roll models, N less than or approximately equal 67. As an example, this bound solidifies the tension between observations of the cosmic microwave background anisotropies and chaotic inflation with a phi(4) potential by closing the escape hatch of large N (<62).  相似文献   

18.
Does water vapor prevent upscaling sonoluminescence?   总被引:3,自引:0,他引:3  
Experimental results for single-bubble sonoluminescence of air bubbles at very low frequency f = 7.1 kHz are presented: In contrast to the predictions of a recent model [S. Hilgenfeldt and D. Lohse, Phys. Rev. Lett. 82, 1036 (1999)], the bubbles are only as bright (10(4)-10(5) photons per pulse) and the pulses as long (approximately 150 ps) as at f = 20 kHz. We can theoretically account for this effect by incorporating water vapor into the model: During the rapid bubble collapse a large amount of water vapor is trapped inside the bubble, resulting in an increased heat capacity and hence lower temperatures, i.e., hindering upscaling. At this low frequency water vapor also dominates the light emission process.  相似文献   

19.
We study the Fano-Kondo effect in a closed Aharonov-Bohm (AB) interferometer which contains a single-level quantum dot and predict a frequency doubling of the AB oscillations as a signature of Kondo-correlated states. Using the Keldysh formalism, the Friedel sum rule, and the numerical renormalization group, we calculate the exact zero-temperature linear conductance G as a function of the AB phase phi and level position epsilon. In the unitary limit, G(phi) reaches its maximum 2e(2)/h at phi = pi/2. We find a Fano-suppressed Kondo plateau for G(epsilon) similar to recent experiments.  相似文献   

20.
A "universal" dependence is predicted of the reduced critical parameters, k(B)T(c) / E0(gamma), V(c) / V0(gamma), and P(c)V(c)/k(B)T(c) = Z(c)(gamma), on the crystal anharmonicity gamma (closely related to the Gruneisen parameter gamma(G)). It is based on a simplified embedded-atom type approach which enables one to utilize the universal zero-temperature equation of state in a version of fluid perturbation theory. This model's critical temperature and density agree with the experimental results for both the heavy rare gases ( gamma approximately 2.85) and heavy alkali metals ( gamma approximately 1.35). Predicted critical parameters for many other liquid metals are consistent with previous estimates, but the model is not applicable when directional bonding is important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号