首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We developed and employed the incremental gauge cell method to calculate the chemical potential (and thus free energies) of long, flexible homopolymer chains of Lennard-Jones beads with harmonic bonds. The free energy of these chains was calculated with respect to three external conditions: in the zero-density bulk limit, confined in a spherical pore with hard walls, and confined in a spherical pore with attractive pores, the latter case being an analog of adsorption. Using the incremental gauge cell method, we calculated the incremental chemical potential of free polymer chains before and after the globual-random coil transitions. We also found that chains confined in attractive pores exhibit behaviors typical of low temperature physisorption isotherms, such as layering followed by capillary condensation.  相似文献   

2.
Molecular simulations of binary adsorption in porous materials are a useful complement to experimental studies of mixture adsorption. Most molecular simulations of binary adsorption are performed using grand canonical Monte Carlo (GCMC) to independently examine a range of state points of interest. A disadvantage of this approach is that it only yields information at a discrete set of state points; therefore, if a complete isotherm is required for arbitrary conditions, some type of data fitting or interpolation must be used in combination with the GCMC data. We show that the transition matrix Monte Carlo (TMMC) method of Shen and Errington (Shen, V. K.; Errington, J. R. J. Chem.Phys. 2005, 122, 064508) is well-suited to simulation of binary adsorption in porous materials. At the completion of a TMMC simulation, the adsorption isotherm for all possible bulk phase compositions and pressures is available without data fitting or interpolation. It is also straightforward to use results from TMMC to compute derivatives of the isotherm such as the mixture thermodynamic correction factors, partial differential ln f(i)/partial differential ln c(j), again without data fitting or interpolation. This approach should be useful in contexts where information on the full adsorption isotherm is needed, such as the design of adsorption- or membrane-based separations.  相似文献   

3.
Grand canonical Monte Carlo and configurational bias Monte Carlo techniques were employed to simulate the adsorption of binary mixtures of butane isomers and quaternary mixtures in nine zeolites at 300 K. For binary mixtures the results show there is a critical pore size, which is 10-membered-ring about 5.6 Å. The channel sizes of BEA, ISV, MOR and CFI are larger than this critical pore size, they prefer i-butane than n-butane, whereas TON with smaller channel size than critical pore size prefers n-butane than i-butane, but its selectivity decreases with pressure increasing. MFI, MEL and TER prefer i-butane than n-butane at low pressure, but with pressure increasing, the selectivity is reversed. BOG prefers i-butane than n-butane but the selectivity decreased with pressure increasing. It demonstrates that the adsorption and selectivity are controlled by both pore size and pore structure. The n-butane–i-butane–n-pentane–2-methylbutane quaternary mixtures adsorbed in these nine zeolites were studied, and the results show alkane chain length dependence at low pressure, but the adsorption is controlled by pore size and structure with pressure increasing in all the zeolites except for TON and BOG.  相似文献   

4.
We describe the development of Metropolis Monte Carlo algorithms for a general network of multiple instruction multiple data (MIMD) parallel processors. The implementation of farm, event, and systolic parallel algorithms on transputer-based computers is detailed and their relative performance discussed. Although the emphasis is on methodology, the application of such parallel algorithms will be important for addressing computational problems such as the determination of free energy differences in complex biologically important molecular systems. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
《Fluid Phase Equilibria》2004,224(1):73-81
In this study, Monte Carlo simulation techniques based on the anisotropic united atom (AUA) potential have been used to predict thermodynamic properties, comprising saturation pressures, vaporization enthalpies and liquid densities, at different temperatures for several isoalkanes (2,3-dimethylpentane, 2,4-dimethylpentane), alkylbenzenes (propylbenzene and hexylbenzene), alkyl-substituted cycloalkanes (propylcyclohexane and propylcyclopentane), polycyclic alkanes (trans-decalin), and naphtenoaromatics (tetralin and indan), representing gasoil range fractions of hydrocarbons. This variety of hydrocarbons with different molecular structures served to demonstrate the transferability of the AUA potential parameters. For this purpose, two types of Monte Carlo algorithm were used: the Gibbs ensemble algorithm to predict equilibrium properties at high temperatures, and the NPT algorithm followed by the thermodynamic integration to extend the prediction to lower temperatures. Techniques increasing the efficiency of the algorithms such as configuration bias, reservoir bias, and parallel tempering were also implemented in the algorithms. Based on available experimental information, good predictions of equilibrium properties were obtained for all the hydrocarbon families studied, and small differences between isomers were represented with a good accuracy.  相似文献   

6.
The single component adsorption of alkanes in carbon slit pores was studied using configurational-biased grand canonical Monte Carlo simulations. Wide ranges of temperature, pressure, alkane chain length, and slit height were studied to evaluate their effects on adsorption. Adsorption isotherms and density and orientation profiles were calculated. The behavior of long alkanes at high temperatures was found to be similar to short alkanes at lower temperatures. This suggests that the isotherms may be related through the Polanyi potential theory.  相似文献   

7.
Argon adsorption (77 K) in atomistic silica nanopores of various sizes and shapes has been studied by means of grand canonical Monte Carlo simulations (GCMC). We discuss the effects of confinement (pore size), pore morphology (ellipsoidal, hexagonal, constricted pore), and surface texture (rough/smooth) on the thickness variation of the adsorbed film with pressure onto the disordered inner surface of porous materials (usually called t-plot or t-curve). We show that no confinement effect occurs when the diameter of the regular cylindrical pore is larger than 10 nm. For pores smaller than 6 nm, we find that the film thickness increases as the pore size decreases. We show that the adsorption isotherm in the rough pore can be described as the sum of an adsorbed amount similar to that found for a smooth pore (of the same radius) and a constant contribution due to atoms "trapped" in the infractuosities of the rough surface which act as a microporous texture. Simulation snapshots for Ar adsorption in hexagonal and ellipsoidal smooth pores indicate that at low pressures the gas/adsorbate interface retains memory of the pore shape and becomes cylindrical prior to the capillary condensation of the fluid in the pore. The film thickness in the hexagonal pore is close to that obtained for a cylindrical pore having a similar dimension. By contrast, we find that the film thickness for an ellipsoidal pore is always larger than that for an equivalent cylindrical pore (having the same length and volume but a circular section). We show that this effect strengthens as the pore size decreases and/or the pore asymmetry increases. Ar adsorption in a cylindrical constricted pore shows that the presence of the narrower part considerably modifies the adsorption mechanism. Finally, we report GCMC simulations of Ar adsorption (77 K) on a plane silica reference substrate for different intermolecular potentials. We discuss the effect of the interaction on the shape of the adsorption isotherm and compare our results with experiments.  相似文献   

8.
By using Monte Carlo simulation, adsorption of both end-adsorbed and middle-adsorbed symmetric triblock copolymers from a non-selective solvent on an impenetrable surface has been studied. Influences of the adsorption energy, the bulk concentration, the chain composition and the chain length on the adsorption behavior including the surface coverage, the adsorption amount and the layer thickness are presented. It is shown that the total surface coverage for both end-adsorbed and middle-adsorbed copolymers increases monotonically as the bulk concentration increases. The higher the adsorption energy and the more the attractive segments, the higher the total surface coverage is exhibited. Surface coverage θ decreases with increasing the length of the non-attractive segments, but the product of θ and the proportion of the non-attractive segments in a triblock copolymer chain is nearly independent of the chain length. The adsorption amount increases almost monotonically with the bulk concentration. The logarithm of the adsorption amount is a linear function of the reciprocal of the reduced temperature. When the adsorption energy is large, the adsorption amount exhibits a maximum as the composition of the attractive segment increases. The adsorption isotherms of copolymers with different length of the non-attractive segments can be mapped onto a single curve under certain energy indicating that copolymers with different chain length have the same adsorption amount. The adsorption layer thickness for the end-adsorbed copolymers decreases as the energy and the number of adsorbing segments increases. The longer non-attractive segments, the larger adsorbed layer thickness is found. The tails mainly governs the adsorption layer thickness.  相似文献   

9.
Adsorption of supercritical carbon dioxide on two kinds of zeolites with identical chemical composition but different pore structure (NaA and NaX) was studied using the Gibbs ensemble Monte Carlo simulation. The model frameworks for the two zeolites with SiAl ratio being unity have been chosen as the solid structures in the simulation. The adsorption behaviors of supercritical CO2 on the NaA and NaX zeolites, based on the adsorption isotherms and isosteric heats of adsorption, were discussed in detail and were compared with the available experimental results. A good agreement between the simulated and experimental results is obtained for both the adsorbed amount and the bulk phase density. The intermediate configurational snapshots and the radial distribution functions between zeolite and adsorbed CO2 molecules were collected in order to investigate the preferable adsorption locations and the confined structure behavior of CO2. The structure behaviors of the adsorbed CO2 molecules show various performances, as compared with the bulk phase, due to the confined effect in the zeolite pores.  相似文献   

10.
A modified Monte Carlo method in conjunction with the canonical and grand canonical ensembles is proposed for simulating adsorption in spatially inhomogeneous porous systems. Unlike the traditional Monte Carlo simulation in terms of the grand canonical ensemble, the simulation for the regions of pore space having no direct communication with the bulk phase is performed in local conditions of the canonical ensemble.  相似文献   

11.
This study examines the synthesis of SBA-15 with tailored pore sizes through controlled thermal treatment for the adsorption of Pb and Cd ions. The aim is to produce a material that can adsorb heavy metals at both high and low concentrations. The materials were characterised by means of N(2) physisorption, powder X-ray diffraction (PXRD), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), microanalysis and transmission electron microscopy (TEM). The surface areas ranged from 410 to 871 m(2)g(-1), and pore diameter was increased from 5.9 to 10.8 nm. This method allows for maximum adsorption of metal ions at very low concentrations. Metal ion adsorption was determined using an Atomic Absorption Spectrophotometer. The effects of pH were found to play a major role in the precipitation and, therefore, adsorption of metal ions. This method proved to be efficient at adsorbing large quantities of both metals (39 and 41 mg g(-1) for Pb and Cd, respectively).  相似文献   

12.
The grand canonical ensemble Monte Carlo simulation and density-functional theory are applied to calculate the structures, local mole fractions, and adsorption isotherms of binary hard-core Yukawa mixtures in a slitlike pore as well as the radial distribution functions of bulk mixtures. The excess Helmholtz energy functional is a combination of the modified fundamental measure theory of Yu and Wu [J. Chem. Phys. 117, 10156 (2002)] for the hard-core contribution and a corrected mean-field theory for the attractive contribution. A comparison of the theoretical results with the results from the Monte Carlo simulations shows that the corrected theory improves the density profiles of binary hard-core Yukawa mixtures in the vicinity of contact over the original mean-field theory. Both the present corrected theory and the simulations suggest that depletion and desorption occur at low temperature, and the local segregation can be observed in most cases. For binary mixtures in the hard slitlike pore, the present corrected theory predicts more accurate surface excesses than the original one does, while in the case of the attractive pore, no improvement is found in the prediction of a surface excess of the smaller molecule.  相似文献   

13.
The adsorption and separation of linear and branched alkanes in the isoreticular metal-organic framework IRMOF-1 have been investigated using Monte Carlo simulation. For pure linear alkanes (C1-nC5), the limiting adsorption properties exhibit linear behavior with the alkane carbon number; the long alkane is preferentially adsorbed over the short alkane at low fugacities, whereas the reverse is found at high fugacities. For pure branched alkanes (C5 isomers), the linear isomer adsorbs more than its branched analogue. The adsorbed amounts of pure alkanes in IRMOF-1 are substantially greater than in a carbon nanotube bundle and in silicalite. For a five-component mixture of C1 to nC5 linear alkanes, the long alkane adsorption first increases and then decreases with increasing fugacity, whereas short alkane adsorption continually increases and progressively replaces the long alkane at high fugacity due to the size entropy effect. For a three-component mixture of C5 isomers, the adsorption of each isomer increases with increasing fugacity until saturation, though there is less adsorption of the branched isomer due to the configurational entropy effect. The adsorption selectivity among the alkanes in IRMOF-1 is smaller than in a carbon nanotube bundle and in silicalite.  相似文献   

14.
Liu  Xiu  Sim  Allan Hua Heng  Fan  Chunyan 《Adsorption》2022,28(5-6):231-247
Adsorption - A systematic study of carbon dioxide in wedge pores under subcritical conditions were conducted with Grand Canonical Monte Carlo simulation. The effects of various factors:...  相似文献   

15.
This paper discusses the applicability of the integrated reverse Monte Carlo and Voronoi-Delaunay approach to local structure analysis and medium-scale structure determination of liquid metals. The advantages of this approach are shown: generation of 3D structural models using experimental diffraction data and subsequent structure determination by atomic coordinate analysis.Original Russian Text Copyright © 2004 by A. S. Roik, V. P. Kazimirov, and V. E. SokolskiiTranslated from Zhurnal Strukturnoi Khimii, Vol. 45, No. 4, pp. 683–691, July–August, 2004.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

16.
The structure of bidisperse polyethylene(PE) nanocomposite mixtures of 50:50(by mole) of long and short chains of C160H322/C80H162 and C160H322/C40H82 filled with spherical nanoparticles were investigated by a coarse-grained, on lattice Monte Carlo method using rotational isomeric state theory for short-range and Lennard-Jones for long-range energetic interactions. Simulations were performed to evaluate the effect of wall-to-wall distance between fillers(D), polymer-filler interaction(w) and polydispersity(number of short chains in the mixture) on the behavior of the long PE chains. The results indicate that long chain conformation statistics remain Gaussian regardless of the effects of confinement, interaction strength and polydispersity. The various long PE subchain structures(bridges, dangling ends, trains, and loops) are influenced strongly by confinement whereas monomer-filler interaction and polydispersity did not have any impact. In addition, the average number of subchain segments per filler in bidisperse PE nanocomposites decreased by about 50% compared to the nanocomposite system with monodisperse PE chains. The presence of short PE chains in the polymer matrix leads to a reduction of the repeat unit density of long PE chains at the interface suggesting that the interface is preferentially populated by short chains.  相似文献   

17.
An isobaric-isothermal Gibbs ensemble Monte Carlo simulation has been carried out to study the adsorption of a model surfactant/solvent mixture in slit nanopores. The adsorption isotherms, the density distributions, and the configuration snapshots were simulated to illustrate the adsorption and self-assembly behaviors of the surfactant in the confined pores. The adsorption isotherms are stepwise: a two-step curve for the smaller (30 A) pore and a three-step one for the larger (50 A) pore. The adsorption isotherms and the interfacial aggregate structure of the surfactants in the pores with various sizes show a qualitatively consistent performance with the previous experimental observation. The micelle size distributions of the adsorbed surfactant aggregates have been analyzed in order to understand the adsorption mechanism, which suggests that the step rise in the surfactant adsorption is associated with the considerable formation of the micelle aggregates in the confined pores. The effect of the interaction between the pore surface and the surfactant on the adsorption behavior has also been investigated. The simulation results indicate that a change in the interaction can modify the shape of adsorption isotherms. A nonlinear mathematical model was used to represent the multistep adsorption isotherms. A good agreement between the model fitting and the simulation data was obtained for both the amount of adsorption and the jump point concentration.  相似文献   

18.
Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.  相似文献   

19.
The average interstitial nanopore structure of single-wall carbon nanohorn (SWNH) assemblies was determined using X-ray diffraction and grand canonical Monte Carlo (GCMC) simulation aided N(2) adsorption at 77 K. The interstitial nanopores of SWNH assemblies can be regarded as quasi one-dimensional pores due to the partial orientation of the SWNH particles; the average pore width of the interstitial pores is 0.6 nm. Good agreement between the GCMC simulation of a structural model with one-dimensional interstitial nanopores and an experimental adsorption isotherm below P/P(0) = 10(-4) is evidence of the quasi one-dimensionality of the interstitial nanopores. A snapshot from the GCMC simulation showed one-dimensional growth of adsorbed N(2) molecules.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号