首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Raman studies are conducted to understand the specific interactions between the individual reactants and the platinum nanoparticle surface during the nanocatalyzed electron transfer reaction between hexacyanoferrate (III) ions and thiosulfate ions. When Pt nanoparticles are added to the thiosulfate ion solution, a shift in the symmetric SS stretching mode is observed compared to the frequency observed for the free thiosulfate ions in solution, suggesting that binding to the Pt nanoparticle surface occurs via the S- ion. It is also observed that there are no shifts in the symmetric and asymmetric OSO bending or SO stretching frequencies. This suggests that the thiosulfate ions do not bind to the nanoparticle surface via the O- ion. When platinum nanoparticles are added to the hexacyanoferrate(III) ion solution, evidence is found for both adsorbed hexacyanoferrate(III) ions and a platinum cyanide complex. For adsorbed hexacyanoferrate(III) ions, the CN stretching frequency is observed at 2101 cm(-1) and the Fe-C stretching frequency is found at 368 cm(-1). The observed CN stretching frequencies located at 2147 and 2167 cm(-1) provide strong evidence that there is a Pt(CN)4(2-) platinum cyanide complex formed. In addition, the Pt-CN band is also observed at 2054 cm(-1). These observed bands provide spectroscopic evidence that the hexacyanoferrate(III) ions dissolve by forming a complex with the surface platinum atoms of the nanoparticles. Raman spectra of the product mixtures are obtained after the completion of the reaction when carried out with higher reactant concentrations to observe the Raman spectra, but with a similar 10:1 ratio of thiosulfate to hexacyanoferrate(III) ions as used previously, with and without PVP-Pt nanoparticles at a correspondingly higher concentration. It is observed that there are no shifts in the characteristic Raman bands associated with hexacyanoferrate(II) ions and no evidence for the formation of adsorbed hexacyanoferrate(II) species or platinum cyanide complexes in the presence of the platinum nanoparticles. In addition, there is evidence for the shifted symmetric SS stretching mode, suggesting that some of the unreacted thiosulfate (present in large excess) is bound to the Pt nanoparticle surface. Thus, under the actual reaction conditions, the hexacyanoferrate(III) ions preferentially react with adsorbed thiosulfate ions to form the reaction products, and this supports the surface catalytic mechanism we proposed previously.  相似文献   

2.
Dominantly tetrahedral shaped poly(vinylpyrrolidone)-platinum (PVP-Pt) nanoparticles are shown to catalyze the Suzuki reaction between phenylboronic acid and iodobenzene but are not as active as the spherical palladium nanoparticles studied previously. The dominantly tetrahedral PVP-Pt nanoparticles (55 +/- 4% regular tetrahedral, 22 +/- 2% distorted tetrahedral, and 23 +/- 2% spherical nanoparticles) are synthesized by using the hydrogen reduction method. The transmission electron microscopy (TEM) results show that a transformation of shape from tetrahedral to spherical Pt nanoparticles takes place 3 h into the first cycle of the reaction. After the first cycle, the spherical nanoparticles have a similar size distribution to that of the tetrahedral nanoparticles before the reaction and the observed shape distribution is 18 +/-6% regular tetrahedral, 28 +/- 5% distorted tetrahedral, and 54 +/- 5% spherical nanoparticles. After the second cycle of the Suzuki reaction, the shape distribution is 13 +/- 5% regular tetrahedral, 24 +/- 5% distorted tetrahedral, and 63 +/- 7% spherical nanoparticles. After the second cycle, the transformed spherical nanoparticles continue to grow, and this could be due to the strong capping action of the higher molecular weight PVP (M(w) = 360 000), which makes the nanoparticles more resistant to aggregation and precipitation, unlike the Pd nanoparticles capped with the lower molecular weight PVP (M(w) = 40 000) used previously. The transformation in shape also occurs when the nanoparticles are refluxed in the presence of the solvent, sodium acetate, and iodobenzene and results in spherical nanoparticles with a similar size distribution to that of the tetrahedral nanoparticles before any perturbations. However, in the presence of phenylboronic acid, the regular tetrahedral nanoparticles remain dominant (51 +/- 6%) and maintain their size. These results support our previous studies in which we proposed that phenylboronic acid binds to the nanoparticle surface and thus acts as a capping agent for the particle and reacts with the iodobenzene. Recycling the nanoparticles results in a drastic reduction of the catalytic activity, and this must be due to the transformation of shape from the dominantly tetrahedral to the larger dominantly spherical nanoparticles. This also supports results in the literature that show that spherical platinum nanoparticles do not catalyze this reaction.  相似文献   

3.
[reaction: see text] We report the ligand-free palladium catalysis of the Suzuki reaction in water using microwave heating. Our methodology uses low palladium loadings (0.4 mol %), is fast (5-10 min reaction time), and is useful for couplings involving boronic acids and aryl iodides, bromides, and chlorides.  相似文献   

4.
5.
In this paper, ZnO nanoparticle photocatalysts were modified by depositing Pd on their surfaces with a photoreduction method. We mainly investigated the modification mechanisms as well as the effects on the photocatalytic activity of ZnO nanoparticles of deposited Pd by means of XPS and SPS (Surface Photovoltage Spectroscopy), and the effects of Pd content on SPS responses were also discussed from the point of the electronic energy level. The results showed that the content of crystal lattice oxygen on the surface of ZnO nanoparticle decreased after an appropriate amount of Pd was deposited, while that of adsorbed oxygen increased, indicating that Pd was mainly deposited on the crystal lattice oxygen. At the same time, the intensity of SPS responses of ZnO nanoparticles remarkably decreased. In addition, the activity of ZnO nanoparticles could be greatly improved by depositing an appropriate amount of Pd in the gas phase photocatalytic oxidation of n-C7H16. Thus, it could be concluded that the increase in surface content of adsorbed oxygen could facilitate the photocatalytic reaction, and there were close relationships between the SPS response and photocatalytic activity, i.e. the weaker the SPS response, the higher the photocatalytic activity, of Pd-deposited ZnO nanoparticles.  相似文献   

6.
Just add O(2): Based on the fact that an oxygen-adsorbed Pd metal surface shows higher reactivity for water dissociation than a clean Pd surface, carbon-supported Pd nanoparticles (NPs) with surface oxygen atoms were developed as a highly effective and reusable heterogeneous catalyst for selective oxidation of silanes to silanols with water as a green oxidant (see figure).  相似文献   

7.
Short and efficient syntheses of various polymer-supported Pd catalysts are reported. The reactivity of these catalysts has been determined for the Suzuki reaction. It turned out that the (tert-butylphenylphosphinomethyl)polystyrene-supported Pd catalyst 2a is highly efficient for versatile Suzuki reactions from aryl chlorides. These couplings are performed in the presence of low amounts (4 mequiv) of supported Pd, the catalyst can be reused more than seven times without loss of efficiency and the Pd leaching is extremely low (<0.1% of the initial amount).  相似文献   

8.
Examination of the catalysts recovered in the N,N-dihexylcarbodiimide-palladium nanoparticle composite catalyzed Suzuki cross-coupling reactions revealed that the metal nanoparticles transformed gradually from spherical-shape to larger needle-shaped crystals. Two types of Ostwald ripening processes were observed. One involves rapid aggregation of the incipient nanoparticle catalyst (2-5 nm) into blackberry-like assemblies (100-200 nm), which is accompanied with the much slower dissolution of small crystals or amorphous nanoparticles and the formation of larger needle-shaped crystals. The observed structural changes provided new insights into the durability of the polymer nanoparticle composite catalyst.  相似文献   

9.
The small size of nanoparticles makes them attractive in catalysis due to their large surface-to-volume ratio. However, being small raises questions about their stability in the harsh chemical environment in which these nanoparticles find themselves during their catalytic function. In the present work, we studied the Suzuki reaction between phenylboronic acid and iodobenzene catalyzed by PVP-Pd nanoparticles to investigate the effect of catalysis, recycling, and the different individual chemicals on the stability and catalytic activity of the nanoparticles during this harsh reaction. The stability of the nanoparticles to the different perturbations is assessed using TEM, and the changes in the catalytic activity are assessed using HPLC analysis of the product yield. It was found that the process of refluxing the nanoparticles for 12 h during the Suzuki catalytic reaction increases the average size and the width of the distribution of the nanoparticles. This was attributed to Ostwald ripening in which the small nanoparticles dissolve to form larger nanoparticles. The kinetics of the change in the nanoparticle size during the 12 h period show that the nanoparticles increase in size during the beginning of the reaction and level off toward the end of the first cycle. When the nanoparticles are recycled for the second cycle, the average size decreases. This could be due to the larger nanoparticles aggregating and precipitating out of solution. This process could also explain the observed loss of the catalytic efficiency of the nanoparticles during the second cycle. It is also found that the addition of biphenyl to the reaction mixture results in it poisoning the active sites and giving rise to a low product yield. The addition of excess PVP stabilizer to the reaction mixture seems to lead to the stability of the nanoparticle surface and size, perhaps due to the inhibition of the Ostwald ripening process. This also decreases the catalytic efficiency of the nanoparticles due to capping of the nanoparticle surface. The addition of phenylboronic acid is found to lead to the stability of the size distribution as it binds to the particle surface through the O(-) of the OH group and acts as a stabilizer. Iodobenzene is found to have no effect and thus probably does not bind strongly to the surface during the catalytic process. These two results might have an implication on the catalytic mechanism of this reaction.  相似文献   

10.
Lemo J  Heuzé K  Astruc D 《Organic letters》2005,7(11):2253-2256
reaction: see text]. The monomeric diphosphino Pd(II) complex 1 and the first three generations of dendritic analogues G1, G2, and G3 are efficient catalysts for the Suzuki coupling reaction of halogenoarenes, including chloroarenes with phenylboronic acid. The recovery and reuse of the dendritic catalysts G1, G2, and G3 are discussed.  相似文献   

11.
由于纳米材料的小尺寸效应,在异相催化剂中,超小的催化剂颗粒往往具有很好的催化性能,多种多样的合成稳定的小纳米颗粒的方法如百花齐放地报道出来.在这些合成方法中,为了防止小颗粒的长大,往往需要稳定剂,常用的稳定剂如功能性纳米材料,树枝状分子等.但是,由于其稳定性较差,制备超小的纳米颗粒往往非常困难,表面吸附的稳定剂也会影响其催化活性.Suzuki反应在现代精细化工合成中具有非常重要的地位.合成容易回收分离的且足以催化氯苯的异相Pd催化剂,将是一个重大的突破.我们使用单电子转移活性自由基聚合(SET-LRP)方法,合成了夹心型的PEG-PNIPEM聚合物,PNIPAM聚合在PEG-1的两端,两端都连接了25个NIPAM分子.通过氢核磁共振(1H NMR),凝胶渗透色谱(GPC)和傅里叶变化红外光谱(FTIR),我们证明了PNIPAM已经成功地接枝在PEG的两端,PEG-PNIPAM的数均分子量Mn,GPC为7841.通过简单的负载流程,我们将Pd纳米颗粒成功的地负载在PEG-PNIPAM共聚物上,得到Pd/PEG-PNIPAM催化剂,Pd的负载量为4.4 wt%.在透射照片中,PEG-PNIPAM看起来像一个薄薄的片层.Pd的团簇颗粒很小,最大约2 nm.我们测量了制得的催化剂Pd/PEG-PNIPAM水溶液随着温度变化的光透过率曲线,最后确定该材料的LCST为41℃.我们认为在温度高于LCST进行反应时,催化剂的载体由亲水变成亲油,这样亲油的反应物分子将容易向催化剂载体扩散并富集.催化剂会形成一个亲油的微环境富集反应物,并形成反应微环境将大大提高催化速率.该催化剂在Suzuki反应中表现出了极好的催化能力.使用该催化剂催化Suzuki反应,我们发现苯硼酸和碘苯在80℃反应时10s内即可完全转化,TOF为4.3× 104 h-1.对于异相Pd催化剂而言,达到这个TOF是非常难得的,可与活性很高的均相催化剂比拟.室温下催化速率明显减慢,但也仍在1 min内转化完全,TOF为7.2×103h-1.当加大反应物的量,反应物/催化剂的比从120增加到1600,反应在3 min内达到100%转化,TOF为3.2× 104 h-1.即使使用苯硼酸和氯苯进行反应,也在5 min内达到了65%的转化.异相Pd催化剂催化氯苯的Suzuki反应是很难进行的,表明该纳米材料具有极佳的催化活性.然而,在催化苯硼酸与碘苯的连续3次反应中,催化剂的活性明显降低,直至失活.使用后的催化剂颗粒长大至几百纳米,许多小颗粒被包裹于其中.Pd颗粒有所长大,PEG-PNIPAM相互缠绕发生团聚,这也就是催化剂失活的原因.由于Pd/PEG-PNIPAM复合物可以通过其温度响应性回收,我们认为其在高效催化方面具有很好的应用前景.  相似文献   

12.
发展兼具高活性和高稳定性的规整非铂电化学催化剂无论对于燃料电池的推广应用还是基础研究都具有重要意义.我们将钯纳米立方体(Pd nanocubes)作为晶种,使用表面掺杂的手段制备了一种表面结构规整的钨掺杂钯纳米立方体(W-doped Pd nanocubes).通过改变合成过程中所加入羰基钨前驱体的量以调控表面钨的原子比例,继而获得了钨原子比例分别为0%,0.8%,1.2%,1.5%的纳米立方体.所制W-doped Pd nanocubes/C催化剂在碱性条件下的氧还原反应中表现出优异性能,其中1.2%W-doped Pd nanocubes/C催化剂性能最佳,在0.9 VRHE时比活性达1.18 mA cm~(-2),质量活性达0.25 A mg~(-1)Pd,分别是商业Pt/C催化剂的4.7倍和2.5倍.研究表明,随着钨的掺杂量从0%增至1.5%,钨掺杂钯纳米立方体的d带中心从-2.49 eV逐渐降至-3.08 eV.同时,光电子能谱结果表明,随着钨掺杂量的增加,钯的3d峰位向低能逐渐偏移,说明了钨掺杂导致了电荷由钨转向钯.而d带中心的下移能够将更多的反键态拉下费米能级,继而导致反应中间体的吸附减弱.因此,由钨到钯的电荷转移导致的d带中心的下移,继而引起的反应中间体对催化剂的吸附作用变弱是氧还原催化活性增强的原因.而过高的W掺杂(1.5%)导致活性的降低也可以用Sabatier规则解释.在循环测试10000圈之后,1.2%W-doped Pd nanocubes/C催化剂的质量活性仅仅减少了14.8%,而商业Pt/C催化剂减少了40%,可见其具有极佳的稳定性.而且循环测试之后的透射电镜表征显示,相比于团聚严重的商业Pt/C催化剂,1.2%W-doped Pd nanocubes/C催化剂仍然分散良好,其形貌也几乎没有发生变化.此外,该催化剂对乙醇氧化反应也表现出优异的性能.在1.0 mol L~(-1)氢氧化钾和1.0 mol L~(-1)乙醇混合溶液中,测试峰电流达6.6 A mg~(-1)Pd,是Pd nanocubes/C催化剂的2.2倍,商业Pd/C催化剂的5.1倍.这同样得益于适量钨掺杂所导致的催化剂d带中心—下移引起的含碳中间体吸附的削弱.经过1000 s的稳定性测试,1.2%W-doped Pd nanocubes/C同样表现出高于商业Pd/C催化剂的稳定性.优异的氧还原和乙醇氧化性能表明所制1.2%W-doped Pd nanocubes/C是一种极具潜力的双功能燃料电池催化剂.  相似文献   

13.
Pd nanoparticles generated in green reaction media (viz. ionic liquids and water) catalyze the one-pot sequential Heck and Suzuki coupling reactions of bromo-chloroarenes to afford unsymmetrically substituted arenes in good yields.  相似文献   

14.
Xenbucin 1, an analgesic drug, was synthesized in 4 steps using two different routes. The biaryl fragment could successfully be produced via a Pd/C catalysed Suzuki coupling in water using sodium tetraphenylborate as a phenylation reagent. Overall yields of the routes were 36% and 59%, respectively.   相似文献   

15.
A new heterogeneous catalyst composed of Pd nanoparticles immobilized within a HypoG el resin has been prepared in the absence of any ligands using an extensive cross-linking method.This newly developed nanocatalyst was characterized by N_2 adsorption-desorption,X-ray diffraction(XRD),transmission electron microscopy(TEM),scanning electron microscopy(SEM),energy dispersive X-ray(EDX),Fourier transform infrared spectroscopy and inductively coupled plasma-mass spectrometer(ICP-MS)techniques.TEM and XRD results revealed that the Pd nanoparticles were well dispersed with diameters in the range of 4–12 nm,and an average size of about 8 nm.The cross-linked Pd catalyst demonstrated excellent catalytic activity towards the synthesis of a series of biaryl compounds by the reaction of various aryl halides(e.g.,bromides andiodides)with phenylboronic acid in the presence of tetrabutylammonium bromide.ICP-MS analysis indicated that there was only 0.25%weight loss of Pd(0.55±0.02 ppm)from the supported catalyst after the first cycle reaction.Furthermore,the catalyst showed excellent reusability(up to five uses)with consistently high levels of catalytic activity following its recovery by filtration.  相似文献   

16.
A new heterogeneous catalyst composed of Pd nanoparticles immobilized within a HypoGel resin has been prepared in the absence of any ligands using an extensive cross-linking method. This new-ly develop...  相似文献   

17.
A novel palladium(II)-catalyzed oxy-carbopalladation process was developed allowing for the orchestrated union of hydroxy ynones with ethyl acrylate, two electron-deficient reactants. With beta-hydroxy ynones, this cascade Wacker-Heck process gave access to highly functionalized tri- or tetrasubstituted dihydropyranones featuring an unusual dienic system. For diastereomerically pure and for enantioenriched beta-hydroxyynones, these reactions proceed without affecting the stereochemical integrity of the existing stereocenters. In addition, tetrasubstituted furanones can be prepared when alpha-hydroxyynones and ethyl acrylate are used as starting materials. The dihydropyranones and furanones obtained upon cyclization are novel compounds, but structurally related carbohydrate derivatives featuring a similar dienic system have been used as starting materials for the construction of polyannulated products, suggesting that these cascade Pd(II)-mediated oxidative heterocyclizations are of value for various synthetic applications.  相似文献   

18.
The synthesis of well dispersed palladium nanoparticles (1-5 nm) on diamine functionalized LDH is reported. The heterogeneous catalyst displayed unprecedented activity in Suzuki coupling reaction.  相似文献   

19.
A series of experiments was performed to determine the nature of the catalyst in peptide-derived phosphine ligands. The selectivity of the catalyst system was determined with four ligands that are diastereomeric at the phosphine containing amino acid. Additionally, a series of monophosphine ligands was synthesized and screened to determine if the active catalysts are derived from a phosphine-amide complex.  相似文献   

20.
Palladium supported on amorphous silica, mercapto-functionalized silica, amine functionalized silica, and zeolite Y has been studied as a catalyst in the Heck reaction of iodobenzene with butyl acrylate in the presence of triethylamine base and dimethylformamide solvent. Trapping of soluble Pd with poly(4-vinylpyridine), hot filtration tests during the batchwise Heck reaction, and reaction tests of effluents from a fixed bed continuous reactor support the conclusion that leached Pd is the active phase in the Heck reaction for all of the catalysts tested. Two different paths of Pd leaching that depend on the chemical state of the Pd were elucidated in this study. Oxidative addition of aryl halide to reduced Pd caused leaching of samples containing metallic particles. However, for a zeolite Y sample containing unreduced cationic Pd, the presence of triethylamine base was required to leach Pd into solution. These two paths of Pd leaching are consistent with the generally accepted mechanism of the Heck reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号