首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes of N-phthaloylglycinate (N-phthgly) and CoII, NiII, CuII, ZnII and CdII containing imidazole (imi), N-methylimidazole (mimi), 2,2-bipyridyl (bipy) and 1,10-phenanthroline (phen), and tridentate amines such as 2,2,2-terpyridine (terpy) and 2,4,6-(2-pyridyl)s-triazine (tptz), were prepared and characterized by conventional methods, i.r. spectra and by thermogravimetric analysis. For imi and mimi ternary complexes, the general formula [M(imi/mimi)2(N-phthgly)2nH2O, where M = CoII, NiII, CuII and ZnII applies. For CdII ternary complexes with imi, [Cd(imi)3(N-phthgly)2]·2H2O applies. For the bi and tridentate ligands, ternary complexes of the formula [M(L)(N-phthgly)2nH2O were obtained, where M = CoII, NiII, CuII and ZnII; L = bipy, phen, tptz and terpy. In all complexes, N-phthgly acts as a monodentate ligand, coordinating metal ions through the carboxylate oxygen, except for the ternary complexes of CoII, NiII and CuII with mimi and CuII and ZnII with imi, where the N-phthgly acts as a bidentate ligand, coordinating the metal ions through both carboxylate oxygen atoms.  相似文献   

2.
Summary Complexes of CoII, NiII, CuII, ZnII, CdII, HgII and UO 2 II with benzil bis(4-phenylthiosemicarbazone), H2BPT, have been synthesized and their structures assigned based on elemental analysis, molar conductivity, magnetic susceptibility and spectroscopic measurements. The i.r. spectra suggest that the ligand behaves as a binegative quadridentate (NSSN) (CoII, CuII, HgII and UO 2 II complexes) or as a binegative quadridentate-neutral bidentate chelating agent (NiII, ZnII and CdII complexes). Octahedral structures for the CoII and NiII complexes and square-planar structure for the CuII complex are suggested on the basis of magnetic and spectral evidence. The crystal field parameters (Dq, B and B) for the CoII complex are calculated and agree fairly well with the values reported for known octahedral complexes. The ligand can be used for the microdetermination of NiII ions of concentration in the 0.4–6×10–4 mol l–1 range and the apparent formation constant for the species generated in solution has also been calculated.  相似文献   

3.
Summary New complexes of general formulae [Ni(HL)2], [ML]·H2O and [Cu(HL)X] (H2L = pyrrole-2-aldehyde Schiff bases ofS-methyl- andS-benzyldithiocarbazates; X = Cl or Br; M = NiII, CuII, ZnII or CdII) were prepared and characterized by a variety of physicochemical techniques. The Schiff bases coordinate as NS bidentate chelating agents in [Ni(HL)2] and [Cu(HL)X], and as tridentate NNS chelates in [ML] (M = NiII, CuII, ZnII or CdII). Both the [Ni(HL)2] and [NiL] complexes are diamagnetic and square-planar. Based on magnetic and spectroscopic evidence, thiolate sulphur-bridged dimeric square-planar structures are assigned to the [Cu(HL)X] and [ML] (M = NiII or CuII) complexes. The complexes ML (M = ZnII or CdII) are polymeric and octahedral.  相似文献   

4.
Summary Complexes of 2,6-dipicolinic acid hydrazide, DPH, with ZnII, CdII and HgII have been prepared and characterized by elemental analysis, i.r. and electronic spectra and by electrical conductance measurements. The ligand is terdentate, having coordination sites at two deprotonated amide-nitrogen and pyridine-nitrogen atoms. The ZnII and HgII complexes are pentacoordinate whereas the CdII complexes are hexacoordinate and have trigonal bipyramidal and pseudooctahedral stereochemistries, respectively. The Zn, Cd and Hg ions induce cyclization of DPH complexes upon reaction with-diketones. The complexes of macrocyclic ligands so formed have the same stereochemistries as those of DPH.  相似文献   

5.
In this study, the new vic-dioxime ligand (LH2) and its complexes with CoII, NiII, CuII, ZnII, CdII and UO2VI are described. The structures of these complexes were characterized by elemental analyses, i.r., 1H- and 13C-n.m.r. spectra, u.v.–vis. spectroscopy, magnetic susceptibility measurements, conductivity measurements and thermogravimetric analyses (t.g.a.).  相似文献   

6.
A series of transition metal complexes of the type [M(ah)3](ClO4)2 (16) [M = MnII, FeII, CoII, NiII, CuII and ZnII, ah = acetylhydrazine] have been prepared by the reaction of M(ClO4)2 · 6H2O with acetylhydrazine formed in situ by the reaction of hydrazine hydrate and acetylsalicylic acid methyl ester. The chelating behaviour of acetylhydrazine and overall geometry of these complexes have been spectroscopically investigated by means of FT-IR, 1H-n.m.r. and electronic spectral techniques, as well as by elemental analysis data, molar conductance values and magnetic susceptibility measurements. Single X-ray structure determination of complex (4) revealed three acetylhydrazine ligands coordinated to nickel ion in a bidentate manner maintaining an octahedral environment. In all other complexes too, an octahedral geometry has been proposed on the basis of results obtained by various physico-chemical studies.  相似文献   

7.
Summary Vanillin thiosemicarbazone (VTSC) has been used to isolate the complexes of the types [M(VTSC)2(H2O)2]X2 (M=MnII, FeII, CoII, or NiII and X=Cl) and [M(VTSC)X2]H2O (M=CuII, ZnII, CdII or HgII and X=Cl). Probable structures of these complexes are suggested on the basis of elemental analysis, molar conductance, magnetic moment and electronic and i.r. spectral data. The fungicidal activity of VTSC and the isolated complexes has been evaluated on pathogenic fungi,Alternaria (Sp.),Paecilomyces (Sp.) andPestalotia (Sp.).On leave from the University of Myosore.  相似文献   

8.
Summary The preparation and characterization oftris-complexes of MnII, CoII, NiII, CuII and ZnII with a new pyridylhydrazone, 2-pyridylcarbaldehyde-N,N-dimethylhydrazone (pch), are described. In all the complexes pch behaves as a bidentate ligand binding through the pyridine and azomethyne nitrogen atoms. The complexes appear to be monomeric, high spin six-coordinate, and a distorted octahedral stereochemistry around the metal is suggested. The e.p.r. results for both CuII compounds indicate a mainly dx 2–y2 ground state with a static Jahn-Teller distortion, whilst for the MnII complex the e.p.r. data indicates a very low symmetry for the MnN6 polyhedron.  相似文献   

9.
Lin  Hua-Kuan  Wang  Xu  Su  Xun-Cheng  Zhu  Shou-Rong  Chen  Yun-Ti 《Transition Metal Chemistry》2002,27(4):384-389
Three novel compounds, based on the 1,3,5-benzene core with C3-symmetry, have been prepared and characterized by elemental analysis, i.r. and 1H-n.m.r. Thermodynamic properties of the ligands and their CoII, NiII, CuII, and ZnII metal complexes have been investigated and the corresponding stability constants obtained at 25.0 ± 0.1 °C and with I = 0.1 mol dm–3 in KNO3 by potentiometric titration. A linear free energy relationship exists between the stability constants of complexes and the protonation constants of ligands in the ternary system of the CuII-5-substituted phenanthroline-tripod ligand complexes.  相似文献   

10.
Summary The reaction of warm alcoholic solutions of acetates of CoII, MnII, ZnII and NiII with 2, 6-diacetylpyridine andS-methylisothiosemicarbazide hydrogen iodide yielded the complexes: [Co(H2L)I2]·H2O, [Mn(H2L)(MeOH)2]I2, [Zn(H2L)(MeOH)I]I and [Ni(HL)]I, (H2L=the pentadentate pentaaza-ligand 2, 6-diacetylpyridine bis(S-methylisothiosemicarbazone)). The reaction of methanolic solutions of [Ni(HL)]I and NH4NCS or LiOAc.2H2O, give [Ni(HL)]NCS and NiL, respectively. For the complexes of CoII, MnII and ZnII, a pentagonal bipyramidal configuration is proposed, with H2L in the equatorial plane and two unidentate ligands (I and/or MeOH) in the axial positions. The complexes [Ni(HL)]X (X=I or NCS) and NiL probably have monomeric five- and dimeric six-coordinate structures, respectively, in which only the chelate ligand is involved in coordination.  相似文献   

11.
1-Isonicotinoyl-4-benzoyl-3-thiosemicarbazide (IBtsc) and its CrIII, MnII, FeIII, CoII, NiII, CuII and ZnII complexes have been prepared and characterized by elemental analyses, magnetic susceptibility measurements, u.v.–vis., i.r., n.m.r. and FAB mass spectral data. The room temperature e.s.r. spectra of the CrIII, FeIII and CuII complexes yield values, characteristic of octahedral, tetrahedral and square-planar complexes, respectively. The Mössbauer spectra of [Fe(IBtsc-H)Cl2] at room temperature and at 78 K suggest the presence of high-spin FeIII. The NiII, CrIII and CuII complexes show semiconducting behaviour in the solid state, but the ZnII complex is an insulator at room temperature. IBtsc and its soluble complexes have been screened against several bacteria, fungi and tumour cell lines.  相似文献   

12.
Summary Several new coordination compounds are reported withN-carbamoylpyrazole (Hcpz) as the ligand;viz. M(cpz)2 where M = CuII and NiII; M(Hcpz)Cl2 where M = MnII, CoII, CuII, ZnII and CdII; M(Hcpz)2Cl2 Where M = FeII, CoII and NiII: M(Hcpz)3(BF4)2 where M = FeII, CoII, NiII, ZnII and CdII; and Cu(Hcpz)2(BF4)2. In the salts, Hcpz is coordinated through the nitrogen atoms of the pyrazole ring and the nitrogen atom of the carbamoyl group. In the Hcpz complexes, coordination takes place through the nitrogen atom of the pyrazole ring and the oxygen atom of the carbamoyl group.  相似文献   

13.
Summary The 4-hydroxyphenylthiocarboxyhydrazide (Hoth) ligand has been characterized by i.r.,1H and13C spectral studies. Its metal complexes with FeII, CoII,III, NiII, CuII and ZnII have been prepared and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility. Mössbauer, visible, e.s.r., i.r.,1H and13C n.m.r. spectral studies. The bonding and stereochemistry of the complexes are discussed. Hoth and its CuII complexes have been screened towards bacteria, viruses and fungi.  相似文献   

14.
Summary Complexes of the type M(AcLeu)2 · B2 (M = CoII, NiII or ZnII; B = H2O, py, 3-pic, 4-pic; AcLeu =N-acetyl-DL-leucinate ion) and M(AcLeu)2 B (M = CoII or ZnII and B = o-phen) were prepared and investigated by means of magnetic and spectroscopic measurements. The i.r. spectra of all the complexes are consistent with bidentate coordination of the amino acid to the metal ion. The room temperature solid state electronic spectra indicate that the symmetry of this species is closer toD 4h and that MO6 and MO4N2 chromophores are present in the M(AcLeu)2 · 2 H2O and M(AcLeu)2Bn · x H2O (B = py, 3-pic, 4-pic, n=2 and x=0 for M = NiII; B = o-phen, n=1 and x=0 for M = CoII; B = py, 3-pic, 4-pic, n=1 and x=1 for M = CoII) complexes, respectively. By comparing the Dq values of the amino acid and those of other N-substituted amino acids previously studied, a spectrochemical series of the the cobalt(II) and nickel(II) complexes is proposed. The1 H n.m.r. spectra of the zinc(II) complexes confirm the proposed stereochemistry.  相似文献   

15.
A novel series of 16-membered binuclear complexes of octaazatetraimine ligand, [M = MnII, CoII, NiII, CuII and ZnII; X = Cl or NO3] have been synthesized by metal template condensation reactions of o-phenylenediamine with N,N′-diacetylhydrazine in 1:1:1 molar ratio in methanol. The proposed stoichiometry and the bonding of the macrocyclic moiety to metal ions along with the overall stereochemistry have been derived from the results of elemental analyses, magnetic susceptibility, conductivity data and the spectral data revealed from FT-IR, , ESI mass, UV–visible studies. An octahedral geometry has been envisaged for MnII, CoII, and NiII complexes while a slight distortion in octahedral geometry has been noticed for CuII complexes. The low conductivity data of all the complexes suggest their non-ionic nature.  相似文献   

16.
Summary Reaction of one mole of acetylacetone with two moles of 4-phenylthiosemicarbazide yields the unusual Schiff base, MeC(=N-NHCSNHPh)CH2C(=NNHCSNHPh)Me. APT = H2L) acetylacetone bis(4-phenylthiosemicarbazone). The complexes of CoII, NiII, CuII, ZnII and UVIO2 have been prepared and characterized by analytical, i.r., electronic spectral and magnetic measurements. The CoII, NiII and CuII complexes have been assigned square-planar stereochemistry on the basis of magnetic and spectroscopic studies. The ligand is a neutral or dibasic quadridentate SNNS donor as revealed by i.r. spectral studies.  相似文献   

17.
Condensation of 1H-pyrazole-3,5-dicarboxylic hydrazide with 1H-indole-2,3-dione (isatin) yield the compartmental ligand, which is capable of encapsulating two transition metal ions namely CoII, NiII, CuII, and ZnII. The ligand is a binuclear hexadentate chelate with N4O2 donating sites. The pyrazole core provides the diazine fragment, which serves as an endogenous bridge between the two metal centers. In CoII and NiII complexes, the ligand is in the imidol form and the subsequent coordination through the imidol oxygen. In other complexes, the lactonic oxygen takes part in ligation. All the complexes are non-electrolytes and soluble in DMSO, DMF, and acetonitrile. Spectral and magnetic studies along with analytical data suggest octahedral geometry for the CoII and NiII complexes, whereas the CuII and ZnII complexes are assigned square pyramidal geometry. The CuII and NiII complexes show one electron redox behavior and the rest are electrochemically inactive.  相似文献   

18.
Complexes of the type [M(tren)(abpt)](NO3)2(H2O)n (1–6) [M = MnII, FeII, CoII, CuII, ZnII (n = 2), NiII (n = 2.25), tren = tris(2-aminoethyl)amine, and abpt = 4-amino-3,5-bis(pyridin-2yl)-1,2,4 triazole] have been prepared. The bonding mode and overall geometry of the complexes have been deduced by elemental analyses, molar conductance values, spectral studies (obtained from FT-IR), 1H-n.m.r., electronic spectral analyses and magnetic susceptibility measurements. A detailed molecular structure of complex (4) has been determined by single X-ray crystallography.  相似文献   

19.
Summary The preparation of oxamic acid complexes of general formula M(H2NCOCOO)2·xH2O (M = MnII, CoII, NiII, CuII or ZnII; x = 1 for CuII, x = 2 for the other metals) is reported. The i.r. and Raman spectra are discussed considering a trans-octahedral structure, formed by five-membered chelate rings with the amide oxygen and one carboxylic oxygen as donor atoms. The apical positions are occupied by water molecules. The thermal degradation process is very similar for the different complexes, first losing H2O in one or different steps, then the fragments of the organic ligand to give the metal oxide as residue. The thermal degradation of the CuII and ZnII compounds results in the formation of a new polymeric compound by deprotonation of the primary amide function in an endothermic process, the polymer further decomposes to form the metal oxide.  相似文献   

20.
A new ligand, 2-carboxybenzaldehyde-(4’-hydroxy)benzoylhydrazone(H2L) and its ZnII and NiII complexes have been synthesized and characterized on the basis of elemental analyses, molar conductivities, 1H-NMR, IR spectra and thermal analyses. In addition, DNA-binding properties of these two metal complexes were investigated using spectrometric titrations, ethidium bromide displacement experiments, and viscosity measurements. The results show that the two complexes, especially the NiII complex, strongly bind with calf-thymus DNA, presumably via an intercalation mechanism. The intrinsic binding constants of the ZnII and NiII complexes with DNA are 2.46 × 105 and 7.94 × 105 M −1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号