首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The relationship among the presence of nonsolvent additives, the rheological behavior of spinning solutions and properties of hollow fiber membranes was studied. The additives tested were water, polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG), and the base mixture was polyethersulfone/N-methyl-2-pyrrolidone (PES–NMP). In addition the effect of combining water and PVP or PEG was also studied. Membranes were prepared using a spinneret having two concentric orifices. The internal coagulant used as well as the nonsolvent from the coagulation bath were both water at 28°C and 30°C, respectively. Rheological properties of polymer solutions were evaluated using a rheometer Haake RV 20. Changes on composition of spin-solutions were also evaluated in terms of membrane water permeability, solute rejection and membrane structure observed using scanning electron microscopy (SEM). Experimental results from this work showed that spinning solutions containing any of the three additives behave as Newtonian fluids in the range of shearing rates tested. The addition of water, PVP or PEG to the base PES–NMP solution increased its viscosity and this effect was independent of the type of additive used. A direct relation between viscosity of casting solutions and membrane thickness was found. However, rheological properties (viscosity and normal stress difference) could not be used to explain differences on membrane water flux (MWF) when using different additives at the same concentration. The addition of any of the three additives generally increased MWF. The extent of this increment seemed to be more related to changes on membrane porosity than changes on pore sizes induced by the nature and concentration of the additive used.  相似文献   

2.
Aligned poly(L-lactide) (PLLA)/poly(?-caprolactone) (PCL)/poly(ethylene glycol)(PEG) fibrous membranes were fabricated by electrospinning. Their morphology, thermal stability, mechanical properties, hydrophilic properties and in vitro degradation behaviors were investigated. With increasing the content of PEG, the PLLA/PCL/PEG blend fibers become thinner due to the increment in solution conductivity and decrease in solution viscosity. The thermal stability, hydrophilic properties, the tensile strength and elongation-at-break of PLLA/PCL/PEG blend fibrous membranes were improved, but porosity were decreased with the content of PEG changing from 10 wt% to 30 wt%. Furthermore, the incorporation of PEG enhanced the degradation of the PLLA/PCL/PEG fibrous membranes due to the better hydrophilic properties. In addition, the PLLA/PCL/PEG fibrous membranes have no toxic effect on proliferation of adipose-derived stem cells.  相似文献   

3.
In this work, the solution plasma process (SPP) is used to treat β-chitosan solutions in order to induce the degradation of chitosan. The effects of solution plasma on the properties of chitosan solutions are investigated. The treatment time was varied from 0 to 300 min. The plasma-treated chitosan was characterized by the following methods; molecular weight by GPC, viscosity, crystal structure by XRD, chemical characteristics by FT-IR, solubility by UV–vis spectrophotometer, and fractional analysis. The results showed that after treatment with plasma for 15–120 min, the viscosity of the chitosan solution and apparent molecular weight of chitosans decreased remarkably, when compared to those of untreated sample. Longer treatment times had less effect on both viscosity and molecular weight of the samples. This suggested that the degradation process of chitosan occurred during plasma treatment. The XRD analysis showed that the crystallinity of chitosan was destroyed, resulting in amorphous structure. FT-IR analysis revealed that chemical structure of chitosan was not affected by solution plasma treatment. The %yield of water-soluble chitosan was increased with increasing plasma treatment time. These results implied that solution plasma process is able to induce the degradation of chitosan solutions.  相似文献   

4.
Shimizu T  Kenndler E 《Electrophoresis》1999,20(17):3364-3372
Electrophoretic mobilities, mu, and diffusion coefficients, D, of a small ion (molecular weight 579) were determined in dependence on the viscosity, eta, of aqueous buffer solutions containing ethylene glycol, or polyethylene glycol (PEG) with average molecular weights of 400, 20000, 100000 or 2000000, respectively, as additives. The values for mu and D are inversely proportional to the viscosity for the solutions with small-sized additives (ethylene glycol and PEG400), in accordance to Walden's rule. In contrast, for the longest polymers the mobilities and the diffusion coefficients approximate the values observed for pure water, and are nearly independent of the viscosity. This result agrees with the model of fractional free volume and the obstruction theory. For solutions with equal viscosity, three ranges can be differentiated for mu and D in relation to the size of the additive: for small additives, on the one hand, and the long-chained polymers, on the other hand, the values for mu and D are nearly independent of the size of the additive. In contrast, a pronounced increase of mu and D is found with increasing polymer size in the molecular weight range between 20000 and 100000. The ratio mu/D, occurring in a number of expressions for the plate height contributions, exhibits a remarkably small change over the entire polymer size and viscosity range (between 1 and 7 cP) under consideration. Consequently, the separation efficiency, expressed by the plate number, is found to be nearly constant, and is independent of viscosity.  相似文献   

5.
Block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic biodegradable polyesters have been reported as thermogelling polymers, because they feature temperature-dependent sol-to-gel or gel-to-sol transitions in aqueous solutions. In this study, a series of thermogelling poly(ethylene glycol methyl ether)-block–poly(cyclohexylenedimethylene adipate)-block–poly(ethylene glycol methyl ether) triblock copolymers and PEG-block–poly(cyclohexylenedimethylene adipate) multiblock copolymers was synthesized by reacting hydroxyl-terminated poly(cyclohexylenedimethylene adipate) (PCA) with poly(ethylene glycol methyl ether) and PEG, respectively, using 1,6-diisocyanatohexane as the coupling agent. Two hydroxyl-terminated PCAs, i.e., poly(1,4-cyclohexylenedimethylene adipate) and poly(1,3/1,4-cyclohexylenedimethylene adipate), were synthesized by the condensation reaction of adipic acid (AA) with 1,4-cyclohexanedimethanol (CHDM) and 1,3/1,4-CHDM, respectively, and used as the hydrophobic polyester blocks of these thermogelling copolymers to compare the effect of crystallinity on the sol-to-gel transition behavior.The polymers were characterized using proton nuclear magnetic resonance, Fourier transform infrared spectroscopy, gel permeation chromatography, differential scanning calorimetry, solubility testing, and rheological analysis. Experimental results revealed that the structure of the PCA block (crystalline vs. amorphous), the molecular weights of the hydrophobic PCA and hydrophilic PEG blocks, and the type of thermogelling polymer (triblock vs. multiblock) influenced the solubility, polymer micelle packing characteristics, maximum storage modulus, and sol-to-gel temperature of the polymers. Among all the samples at 40 wt.% aqueous solutions, triblock copolymer TB3 showed sol-to-gel temperature at 22 °C, and had the highest maximum storage modulus about 170 Pa.  相似文献   

6.
The polymer-micelle model, formerly established by Cabane, is revised to develop a new viscosity equation to describe the dependence of dilute solution viscosity on polymer concentration in PEG/SDS aqueous solutions. Two parameters inthe new equation were proposed to characterize the influence of the polymer solution viscosity on the added surfactant. The viscosity data of polyethylene glycol (PEG) solutions containing sodium dodecyl sulfate (SDS) were measured by the Ubbelohde dilution viscometer and the new equation proved to be in good agreement with the experimental data. Copyright 2000 Academic Press.  相似文献   

7.
丁建勋  常非  王金成 《高分子科学》2014,32(12):1590-1601
Poly(lactide-co-glycolide)-poly(ethylene glycol)-poly(lactide-co-glycolide)(PLGA-PEG-PLGA) triblock copolymer was synthesized through the ring-opening polymerization of LA and GA with PEG as macroinitiator and stannous octoate as catalyst. The amphiphilic copolymer self-assembled into micelles in aqueous solutions, and formed hydrogels as the increase of temperature at relatively high concentrations(〉 15 wt%). The favorable degradability of the hydrogel was confirmed by in vitro and in vivo degradation experiments. The good cellular and tissular compatibilities of the thermogel were demonstrated. The excellent adhesion and proliferation of bone marrow mesenchymal stem cells endowed PLGA-PEGPLGA thermogelling hydrogel with fascinating prospect for cartilage tissue engineering.  相似文献   

8.
Porous three‐dimensional collagen/chitosan scaffolds combined with poly (ethylene glycol) (PEG) and hydroxyapatite were obtained through a freeze‐drying method. Physical cross‐linking was examined by dehydrothermal treatment. The prepared materials were characterized by different analyses, eg, scanning electron microscopy (SEM), measurements of porosity and swelling, mechanical properties, and resistance to enzymatic degradation. The porosity of scaffolds and their swelling ratio decreased with the addition of hydroxyapatite. Moreover, after exposure to collagenase, the collagen/chitosan matrices containing PEG showed much faster degradation rate than matrices with the addition of hydroxyapatite. The results indicated that the addition of hydroxyapatite led to improvement of stiffness. The highest degree of porosity and swelling were demonstrated by collagen/chitosan/PEG matrices without hydroxyapatite.  相似文献   

9.
A series of multiblock poly(ether urethane)s comprising poly(ethylene glycol) (PEG), and poly(propylene glycol) (PPG) segments were synthesized. Their aqueous solutions exhibited thermogelling behavior at critical gelation concentrations (CGC) ranging from 8 to 12 wt%. The composition and structural information of the copolymers were studied by GPC and 1H NMR. The critical micellization concentration (CMC) and thermodynamic parameters for micelle formation were determined at different temperatures. The temperature response of the copolymer solutions were studied and found to be associated with the composition of the copolymers.  相似文献   

10.
Bioencapsulation allows the protection of biologically active substances or cells from the biological environment. As such, bioencapsulation is often used for the delivery of drugs, growth factors and therapeutically useful cells. Depending on the site of implantation, the biocapsules are subjected to different pH environments, which will affect the degradation properties, mechanical properties and swelling behaviour of the biocapsules. As such, the encapsulation material plays an important role in the long term stability and performance of the biocapsules in vivo. In this study, five types of encapsulation materials were investigated: (i) alginate (A), (ii) alginate-chitosan (AC), (iii) alginate-chitosan-alginate (ACA), (iv) alginate-chitosan-polyethylene glycol (PEG) (ACP) and (v) alginate-chitosan-polyethylene glycol (PEG)-alginate (ACPA). Degradation studies were carried out by immersing the microcapsules in solutions of different pH values to investigate the role of the material as well as the number of encapsulation layers in maintaining the stability of the microcapsules in the different pH environments. Compression testing indicated that even with the presence of PEG on the surface membrane, there was not much difference in mechanical strength between ACA and ACPA microcapsules. However, the use of PEG did affect the weight change of the ACPA microcapsules when immersed in water and three different pH solutions. For the swelling test, the ACPA microcapsules showed a lower water uptake than ACA microcapsules. For degradation, the presence of PEG led to a lower increase in weight change compared to non-PEG chitosan microcapsules. Hence, the study revealed that PEG influenced the integrity of the surface membrane and not the mechanical strength of the microcapsules. With the inclusion of PEG, the interpenetrating network on the surface membrane would be further reinforced. As such, the addition of PEG to the alginate-chitosan microcapsules led to protection against an acidic environment, whilst the number of coating layers only influences the swelling properties and not the degradation and Young’s modulus of the microcapsules.  相似文献   

11.
聚乙二醇对聚醚砜微孔膜致孔作用的研究   总被引:1,自引:0,他引:1  
以聚醚砜聚乙二醇溶剂为铸膜液体系、采用干湿相转化法制备微孔滤膜,研究了各种制膜条件对膜孔径结构的影响.实验发现聚乙二醇在体系中起到分散稳定的作用,只有到浓度大于70%时,才会对铸膜液的粘度产生明显影响,聚合物在铸膜液中的溶解状态也随之改变,进而影响膜的结构.不同溶剂NMP、DMF、DMAc、DMSO等极性溶剂或固体溶剂己内酰胺均可制得开孔率较高的微孔膜,但对膜的结构和性能影响差别不大.在本研究体系中,膜的结构取决于聚乙二醇、溶剂的浓度比例关系.  相似文献   

12.
The preparation and properties of asymmetric poly(vinyldiene fluoride)(PVDF)membranes are described in this study.Membranes were prepared from a casting solution of PVDF,N,N-dimethylacetamide(DMAc)solvent and water- soluble poly(ethylene glycol)(PEG)additives by immersing them in water as coagulant medium.Experiments showed that when PEG molecular weight increased,the changes in the resultant membranes' morphologies and properties showed a transition point at PEG6000.This indicated that PEG with a relati...  相似文献   

13.
Graft copolymers of poly(ethylene glycol) (PEG) on a chitosan backbone (PEG-g-chitosan) have been synthesized and their aqueous solution properties were investigated. At pH 6.5 the graft copolymers are 100% soluble, while chitosan phase separates from solution at those conditions. These interesting graft copolymers may be especially suitable as carriers for delivery of anionic drugs, such as proteins, glycosaminoglycans, and DNA plasmids or oligonucleotides.  相似文献   

14.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

15.
By the interaction of a water–glycol solution of poly(ethylene glycol) (PEG) with calcium chloride dihydrate, a gel was produced. It was determined that, below a certain shear rate, this gel is a Newtonian fluid; however, above a certain shear rate, which depends on the gel viscosity, the properties of this gel are anomalous: the gel flow instantaneously completely stops. The viscosity of the gels was found to exponentially increase with increasing concentration of the cross-linking metal at constant PEG concentration. The density of the gels linearly increases with increasing concentration of the cross-linking metal at constant PEG concentration.  相似文献   

16.
A GC-ICP-MS method based on extraction and alkylation of butyltins with sodium tetraethylborate was used to quantitatively assess the fate of these analytes in solutions and sediments following exposure to gamma-irradiation. The effects of a 2.5 Mrad sterilization dose on three butyltin species in both methanolic calibration solutions and in sediment matrices were investigated. Although significant losses of tributyltin (TBT, 90%), dibutyltin (DBT, 100%) and monobutyltin (MBT, 80%) were detected in standard solutions prepared in methanol following gamma-irradiation, no species inter-conversion occurred. Some degradation of TBT (38%) and DBT (32%) but no significant change in MBT content was found using a spiked sediment CRM HISS-1. Conversion DBT to MBT in spiked HISS-1 was deduced. Much smaller degradation of TBT (16% loss) and 10% loss of DBT by conversion to MBT (14% gain) was registered using a sediment blend of PACS-2 and HISS-1 (SOPH). Despite some initial losses of TBT and DBT due to irradiation, better than 2% RSD in both TBT and DBT concentrations measured in twelve different bottles of blended sediment SOPH were obtained, indicating the material may be considered homogeneous for these analytes. Results from a long-term five-year stability study of PACS-2 show that all three butyltins are stable during storage at 4 degrees C followed with 2.5 Mrad minimum dose of gamma-irradiation sterilization treatment.  相似文献   

17.
通过Diels-Alder(D-A)反应,合成了具有规整化学结构的接枝共聚物,壳聚糖-O-聚乙二醇(CS-O-PEG).D-A反应所需双烯体(呋喃环)通过糠基硫醇与端甲基丙烯酸酯聚乙二醇之间的巯基-丙烯酸酯(thio-acrylate)反应合成得到;马来酰亚胺基丙酸通过活泼酯法偶联到十二烷基硫酸钠-壳聚糖复合物(SCC)羟基上,从而获得亲双烯体.采用红外光谱(FTIR)和核磁共振(1H-NMR)表征了中间产物与最终产物的结构,并用原位核磁监测D-A反应及其逆反应过程.结果表明,聚乙二醇双烯体可在水介质中温和条件下定量接枝到壳聚糖羟基上,反应具有点击特征;同时,聚乙二醇与壳聚糖之间的连接键在高温下(90℃)可通过D-A逆反应而发生断裂.  相似文献   

18.
The effect of added salts (NaCl, Na(2)SO(4), and NaSCN) or polyols (glycerin (Gly), 1,3-butanediol (1,3-BD), ethylene glycol (EG), and polyethylene glycol (PEG400)) on the hexagonal liquid-crystalline structure of polyoxyethylene-modified silicone was investigated by means of small angle X-ray scattering (SAXS). The effective cross-sectional area of the lipophilic part of the aggregate, a(s), in the hexagonal phase decreases upon the addition of salts, on one hand, lowering the cloud point in the dilute aqueous siloxane surfactant solutions. On the other hand, if added salt raises the cloud point, the a(s) increases. Similar results were obtained in the case of the addition of polyols. Since the a(s) mainly depends on the EO chain length, the above results are direct evidence that the hydration or dehydration of the EO chain is affected by these additives. The static fluorescence probe method was applied to the Gly and 1,3-BD systems using 8-anilino-1-naphthalene-sulfonic acid, ANS, to know the change in hydration of the EO chains. In the Gly system, the hydration of the EO chain monotonically decreases whereas 1,3-BD first increases the hydration and then decreases it at high 1,3-BD content. These results are very consistent with the SAXS and cloud temperature results. Copyright 2000 Academic Press.  相似文献   

19.
This study investigates the effect of PEG additive as a pore-former on the structure formation of membranes and their permeation properties connected with the changes of thermodynamic and kinetic properties in phase inversion process. The membranes were prepared by using polysulfone (PSf)/N-methyl-2-pyrrolidone (NMP)/poly(ethylene glycol) (PEG) casting solution and water coagulant. The resulting membranes prepared by changing the molecular weight of PEG additive and the ratio of PEG to NMP were characterized by scanning electron microscope observations, measurements of water flux and PEG rejection. The thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity. The correlations between the final membrane structure/permeation properties and thermodynamic/kinetic properties of membrane forming system are discussed extensively.  相似文献   

20.
In this study, a simple method was developed to crosslink chitosan using poly(ethylene glycol) (PEG) with different molecular weights. Crosslinking of chitosan was confirmed by various spectral analyses. The differential scanning calorimetric (DSC) study indicated that the rigid crystalline structure of chitosan was decreased after crosslinking with PEG. The PEG-crosslinked chitosan (PEG-Ch) showed a pH-independent swelling behavior: swelled in both the simulated stomach (pH 1.1) and intestinal (pH 7.4) solutions. The swelling ratio of PEG-Ch increased significantly with a higher molecular weight of PEG used. In contrast, chitosan dissolved completely in a simulated stomach solution and showed a comparatively less swelling in a simulated intestinal solution. Thus, the prepared PEG-Ch could be a better biomaterial than chitosan in the development of orally sustained drug-delivery devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号