首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The band spectrum of natural waves in a periodic structure formed by alternating dielectric and semiconductor layers is investigated for the propagation of waves at some angle with respect to a magnetic field applied along the periodicity axis. A method is presented for deriving a dispersion equation, and its properties are analyzed numerically. It is shown that, in the absence of dissipation, there are two independent spectra of natural waves in the structure being considered, and the regions of existence of various types of such waves are classified. It is established that the transmission bands of the two spectra may supplement one another or overlap. It is found that, for the chosen magnetic-field direction, there exist numerous bands of transmission of cyclotron waves.  相似文献   

2.
On the basis of numerical solution of the dispersion equation, we obtain the spectra of weakly damped high-frequency waves in a hot magnetized plasma for the case where the electron cyclotron frequency ωHe is below the plasma frequency ωpe. It is shown that the longitudinal wave propagating at an angle to the magnetic field evolves into the slow extraordinary wave for the refractive index n ≤ 1. For n ≫ 1, the longitudinal-wave frequency increases with the refractive index, and the wave evolves into the wave with anomalous dispersion if the angle θ between the wave vector and the magnetic field is close to 90°. In the same range of θ angles, Bernstein modes appear in the spectrum of plasma eigenmode oscillations. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 49, No. 3, pp. 258–266, March 2006.  相似文献   

3.
The spectrum of magnetoelastic waves propagating along the magnetic field in an in-plane magnetized ferromagnetic plate is numerically investigated in the exchangeless approximation. No restrictions are imposed either on the field pattern of backward volume magnetostatic waves (BVMSWs) or elastic waves supported by a plate of a given geometry across the plate or on the relationship between the sound velocity v S and the phase velocity of the magnetoelastic waves v=ω/q (ω is the frequency, q is the wave number). The resonance interaction of the BVMSWs and elastic waves is accompanied, as a rule, by the formation of “stop” bands δω that are proportional to the magnetoelastic coupling constant b. When the BVMSWs are in resonance with Lamb and shear elastic modes the values of the magnetoelastic gaps δω at vv S turn out to be of the same order. For vv S , the efficiency of the interaction between the BVMSWs and transverse Lamb modes is almost one order of magnitude higher. If the frequency spacing Δω between the elastic modes is smaller than the mag-netoelastic gap in the spectrum (Δω≤δω), which takes place, particularly, in the region of crowding the elastic mode spectrum (vv S), the resonant interaction results in mixing the dispersion laws for the elastic modes. Namely, a surface mode may transform into a volume one and a shear mode, into the Lamb mode or into a shear mode with another number. The resonance interaction of the shear and Lamb elastic modes not only forms the magnetoelastic gaps δω∼b 2 but also changes the efficiency of elastic wave coupling with the magnetic subsystem. This may show up as the coexistence of the effects of “repulsing” both the dispersion laws and the damping decrements of the elastic waves at the resonance frequency. It is shown that magnetostriction splits the cutoff frequencies of both transverse Lamb modes and shear modes, as well as the long-wave (q → 0) frequency limits f 0 of the BVMSW modes. This may cause the resonance interaction between BVMSW modes of equal evenness in a narrow frequency band Δ∼b near f 0.  相似文献   

4.
We consider generation of electromagnetic radiation at the electron cyclotron harmonics by energetic-electron beams having the mean momentum parallel, transverse, or oblique to the external magnetic field. This process is most efficient if the characteristic transverse momentum is sufficiently large. The radiation spectrum of the beam moving exactly along the magnetic field is closest to the equidistant one. The angle between the direction of the maximum emission and the magnetic field varies from 70° for the field-aligned beam to 90° for the beam whose characteristic momentum is transverse to the magnetic field. In fairly strong magnetic fields, i.e., for Be >pe, where Be and pe are the electron cyclotron and plasma frequencies, respectively, the radiation is maximum at low cyclotron harmonics and the second harmonic dominates. In the weaker fields (Be < pe), higher harmonics, up to fifth or sixth, are generated. Both wave modes are generated, but generation of the ordinary waves is far less efficient than that of the extraordinary waves under the same conditions.  相似文献   

5.
The spectrum of magnetoelastic waves in a periodic structure of alternating ferromagnetic and nonmagnetic layers was studied. In the case of ferromagnetic layers with easy magnetization axes parallel to the layer surfaces, an orientational phase transition induced by an external tangential magnetic field He was considered. The formation of an inhomogeneous phase with a spatially modulated order parameter, which is caused by the magnetization being coupled through magnetostriction to lattice strains near the interfaces separating the magnetoelastic from elastic media, is predicted. It is shown that at a certain critical field in excess of the orientational phase transition field in the system without magnetostriction, a magnetoelastic wave propagating in a direction parallel to the in-plane magnetization vector M becomes unstable at finite values of the wave vector and condenses into a magnetostriction domain structure. A phase diagram in the (L, T, He) coordinates is constructed, and the regions of existence of thermodynamically equilibrium collinear, canted, and domain phases are established (L and T are the thicknesses of the ferromagnetic and nonmagnetic layers, respectively).  相似文献   

6.
Interference of longitudinal acoustic waves propagating in opposite directions in a homogeneous isotropic absorbing plate and a periodic structure with a defect is considered theoretically. The periodic structure consists of alternating absorbing solid and transparent liquid layers. The defect is modeled by replacing a solid layer by a liquid layer of the same thickness. The dependences of the transmission spectrum of the energy flux on the amplitude ratio and phase difference of the interacting waves are studied. It is shown that, by varying the parameters of the opposite pressure wave, it is possible to change the transmission spectrum of the direct wave in a wide frequency range. An expression is obtained to determine the extremums of the wave amplitude transmitted through an absorbing plate depending on the amplitude ratio of the interacting waves. The results of studying a one-dimensional periodic structure demonstrate the possibility to considerably change the transmission spectrum of the pressure wave leaving the structure and also to eliminate the invariance of this spectrum under the interchange of the kth and (n?k+1)th layers (where n is the total number of layers in the structure).  相似文献   

7.
Quantum electronic states in a dot (antidot) array in the presence of a dc magnetic field are studied. A new method of numerical calculation of the electron spectrum and wave functions in a two-dimensional periodic potential and perpendicular magnetic field is proposed. The magnetic-subband energies, density of electron states, and electron density |ψ(x,y)|2, as well as the amplitude of the potential, and lattice period and degree of anisotropy for different magnetic fields have been found. The calculations were performed for quantum dots in the In0.2Ga0.8As-GaAs and GaAs-Al0.3Ga0,7As systems. The rearrangement of the spectrum with variation of magnetic field and with transition from the tight-binding to weak-binding approximation is studied (ω c is the cyclotron frequency, and V 0 is the periodic-potential amplitude). The calculations show that the two-dimensional lattices epitaxially grown presently on semiconductor surfaces permit observation of quantum effects associated with rearrangement of the spectrum (electron transport and optical absorption) in magnetic fields H⩽1 MG. Fiz. Tverd. Tela (St. Petersburg) 40, 1134–1139 (June 1998)  相似文献   

8.
In communication processes, amplitude modulation is very helpful to save power using a single band transmission. Using the hydrodynamical model of semiconductor plasma analytical investigations are made for the amplitude modulation as well as demodulation of an electromagnetic wave incorporating carrier heating (CH) effects in acousto-optic magnetised semiconductor plasma. The CH effects add new dimensions in the present analysis. Analysis are made under different wave number regions over a wide range of cyclotron frequencies. It is found that incorporation of CH effects modifies the amplitude modulation and demodulation processes effectively. Numerical estimations are made for III–V semiconductor crystal irradiated by pump wave of frequency 1.6×1013 s?1. Complete absorption of the waves takes place in all the possible wavelength regimes when the cyclotron frequency ωc becomes nearly equal to ω0, the pump frequency on neglecting the collision term in modulation/ demodulation indices.  相似文献   

9.
Using a mean-field approximation, we have developed a systematic treatment of collective electronic modes in a semiconductor superlattice (SL) in the presence of strong electric and magnetic fields parallel to the SL axis. The spectrum of collective modes with zero wavevector along the SL axis is shown to consist of a principle magnetoplasmon mode and an infinite set of Bernstein-like modes. For non-zero wavevector along the SL axis, in addition to the cyclotron modes, extra collective modes are found at the frequencies |Nω c±Mω s|, which we call cyclotron-Stark modes (ω c and ω s are respectively the cyclotron and Stark frequencies, N and M are integer numbers). The frequencies of the modes propagating in “oblique” direction with respect to the SL axis show oscillatory behavior as a function of electric field strength. All the modes considered have very weak spatial dispersion and they are not Landau damped. The specific predictions made for the dispersion relations of the collective excitations should be observable in resonant Raman scattering experiments. Received 29 August 2002 / Received in final form 25 February 2003 Published online 4 June 2003 RID="a" ID="a"e-mail: 612033@inbox.ru  相似文献   

10.
We consider the conditions for four-wave decay of two primary plasmons with wave vector and frequency 0 close to the multiple gyroresonance frequency nBe into two secondary plasmons with frequencies 1 > 0 and 2 < 0. The secondary plasmons belong to the upper hybrid and the electron cyclotron branches. It is shown that the main features of the broad upshifted maximum (BUM) in the SEE spectrum can be explained in the context of the proposed process. The BUM feature appears in the region of frequencies having a positive shift from the high-power radio wave frequency. In particular the broad band nature of the BUM can be a result of the broad spectrum of wave number k0 of the primary plasma waves. In this case the observed cut-off frequency fcutoff limiting the BUM spectrum on the lower side can result from the lower bound of k0 (the increase in 1 corresponds to decay of shorter wave plasmons). In our approach we assume that the generation of primary plasma oscillations by the high-power radio wave and the conversion of secondary plasma waves into the electromagnetic waves is due to coherent scattering of corresponding waves by small-scale magnetic-field-aligned artificial irregularities or to another nonlinear processes.Published from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 39, No. 3, pp. 301–317, March, 1996.  相似文献   

11.
We present a comparative analysis of the tunneling times of electromagnetic (EM) waves propagating in isotropic and anisotropic media. First, suitable expressions for the tunneling times in a layered periodic material, with anisotropic properties originating from its structure, are derived, followed by numerical calculations performed for a new type of anisotropic semiconductor metamaterial. In the first case, we have considered a layered structure which contains two differently doped In0.53Ga0.47As semiconductor layers. The second structure under investigation is made of alternately placed layers of doped In0.53Ga0.47As and undoped Al0.48Ga0.52As. The investigation of the dwell time as a function of incident wave frequency has revealed the existence of two peaks, one of which may be interpreted as a consequence of anisotropy, while the other one corresponds to the peak related to the absorption and the group delay. Both of these two peaks are affected by variations of layers?? doping densities. Furthermore, at increased incident angles of incoming EM waves, the dwell time peak occurs at the upper boundary of the frequency interval, for which the structure exhibits negative refractive index.  相似文献   

12.
The effect of carrier drift on the dispersive properties and instability of electromagnetic waves and plasma polaritons in infinite layered periodic semiconductors are considered. It is assumed that in similar semiconductor layers, carriers drift parallel to the interfaces. Drift waves are shown to have a specific band structure of the spectrum. The dispersive properties of collective plasma polaritons under drift are considered, the instability of the polaritons and drift waves is studied, and the instability increments are determined.  相似文献   

13.
Backward waves in waveguides completely filled with magnetoactive plasma (gaseous or semiconductor plasma) have been investigated numerically. It is shown that two types of backward waves exist in such waveguides: cyclotron backward waves and waveguide HE-modes. While the cyclotron modes are backward waves at arbitrary system parameters (plasma density, magnetic field and waveguide radius), the waveguide backward waves appear only at certain values of there parameters. In addition the cyclotron backward waves can propagate at arbitrary wave-number kz and at arbitrary phase velocity. The backward waveguide modes exist only at limited values of kz and of phase velocities.  相似文献   

14.
Luminescent properties of manganese(II) phosphates prepared by thermal dehydration of Mn(H2PO4)2·2H2O have been studied. The emission spectrum consists of two bands whose relative intensity and spectral position depend on the chemical and crystalline structure of phosphates. The different courses of temperature quenching of luminescence intensity and excitation spectra of each emission band of Mn(H2PO4)2·2H2O, Mn(H2PO4)2, MnH2P2O7 and c-Mn2P4O12 are discussed.  相似文献   

15.
The return current induced in a plasma by a relativisitc electron beam generates a new electron-ion two-stream instability (return current instability). Although the effect of these currents on the beam-plasma e-e instability is negligible, there exists a range of wave numbers which is unstable only to return current (RC) instability and not to e-e instability. The electromagnetic waves propagating along the direction of the external magnetic field, in which the plasma is immersed, are stabilized by these currents but the e.m. waves with frequencies,ω 2Ω e 2ω pe 2 (Ω e andω pe being cyclotron and plasma frequency for the electrons of the plasma respectively) propagating transverse to the magnetic field get destabilized. Heuristic estimates of plasma heating, due to RC instability and due to decay of ion-acoustic turbulence generated by the return current, are made. The fastest time scale on which the return current delivers energy to the plasma due to the scattering of ion-sound waves by the electrons can be ∼ω pi −1 (ω pi being the plasma frequency for the ions).  相似文献   

16.
Dispersion properties of plasma waves with frequencies close to the upper hybrid frequency u and the multiple electron cyclotron frequency nBe (double resonance) are considered for an inhomogeneous plasma with opposite gradients of the electron density and magnetic field magnitude. We show that a region of possible solutions of the dispersion relation decreases in real space as well as in wave vector space as of the wave frequency approaches double resonance. The results are applied to an interpretation of experiments on ionospheric modification by high-power radio waves with frequencies close to nBe.Radiophysical Research Institute, Nizhny Novgorod, Russia. Swedish Institute of Space Physics, Uppsala Division, Sweden. Swedish Institute of Space Physics, Kiruna Division, Sweden. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 37, No. 5, pp. 617–633, May, 1994.  相似文献   

17.
Based on a theory developed previously, parametric interaction between space-charge waves in thin-film semiconductor structures with negative differential conductivity is analyzed. The analysis is carried out in the approximation that the drift flux of charge carriers has a rigid boundary and under the assumption that the frequency of low-frequency pumping equals the cutoff frequency f c of waves being amplified (f c roughly equals 30 GHz in our case). For asymmetric structures, a general multimode set of coupled equations is reduced to a pair of differential equations for the excitation amplitudes of the fundamental space-charge mode at the signal frequency ωs and idler frequency ωis−ωp. The equations are solved numerically for n-GaAs-based structures, and the solution obtained is discussed.  相似文献   

18.
The spectrum of standing spin waves has been detected by the ferromagnetic resonance method in NiFe(740 Å)/Cu/NiFe(740 Å) three-layered film structure in the perpendicular configuration for the copper thickness d Cu ≤ 30 Å. At thicknesses d Cu > 30 Å, the resonance absorption curve is a superposition of two spinwave resonance spectra from individual ferromagnetic NiFe layers. For Co/Pd multilayer films, united spinwave responance spectra have also been observed at thicknesses of the paramagnetic palladium layer up to d Pd < 30 Å. The partial exchange stiffness has been calculated for a spin wave propagating across the Pd layer (A Pd = 0.1 × 10?6 erg/cm). This value is always positive (up to the critical thickness of the palladium interlayer d Pd < d c) or equal to zero (d Pd > d c).  相似文献   

19.
The direct component of the electric current induced in graphene placed in a constant magnetic field has been found in the case where two electromagnetic waves with two mutually perpendicular planes of polarization are normally incident on the surface of the sample. It has been demonstrated that the direct component of the current along the direction of the electric field vector of the wave with the frequency ω1 arises only when the ratio between the frequencies of the incident waves is ω12 = 2 or 1/2. In the latter case, the direct current component appears only in the presence of a magnetic field.  相似文献   

20.
The propagation and spectrum of eigenwaves in a periodic ferromagnet-semiconductor structure subjected to a plane bias field perpendicular to the propagation direction are studied. Transformation matrices for the structure period and dispersion relations for the TE and TM waves are obtained and analyzed in the wavelength region where the spectrum exhibits a band structure. It is demonstrated with the reflection coefficient that the external field can be used to control the eigenwave properties in different ranges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号