首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
We have developed the high-pressure electron spin resonance (ESR) system using a micro-coil in the frequency region up to around 2 GHz and potentially 10 GHz. The hybrid-type piston-cylinder pressure cell whose maximum pressure reaches 4 GPa was used. In this study, we obtained ESR spectra at 2.3 GPa successfully, which can never be obtained by the single-layer piston-cylinder pressure cell. The minimum detectable spin number was estimated to be the order of 1012 spins/G. Moreover, it is shown that the sensitivity can be improved by two orders of magnitude using the field modulation technique. This high-pressure ESR technique is a promising one to achieve the sensitivity and the high pressure simultaneously.  相似文献   

2.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

3.
We discuss the design and performance of a very sensitive low-field magnetometer based on the detection of free spin precession of gaseous, nuclear polarized 3He or 129Xe samples with a SQUID as magnetic flux detector. The device will be employed to control fluctuating magnetic fields and gradients in a new experiment searching for a permanent electric dipole moment of the neutron. Furthermore, with the detection of the free precession of co-located 3He/129Xe nuclear spins it can be used as ultra-sensitive probe for non-magnetic spin interactions, since the magnetic dipole interaction (Zeeman-term) drops out. Characteristic spin precession times T2 * of up to 60 h were measured. The achieved signal-to-noise ratio of more than 5000:1 leads to an expected sensitivity level (Cramer-Rao lower bound) of δB≈1 fT after an integration time of 220 s and of δB≈10-4 fT after one day. By means of a co-located 3He/129Xe magnetometer, noise sources inherent in the magnetometer could be investigated, showing that CRLB is fulfilled, at least down to δB≈10-2 fT. The reason for such a high sensitivity is that free precessing 3He (129Xe) nuclear spins are almost completely decoupled from the environment. Therefore, this type of magnetometer is particularly attractive for precision field measurements where long-term stability is required.  相似文献   

4.
We report the development of a millimeter-wave electron-spin-resonance (ESR) measurement system at the University of Fukui using a 3He/4He dilution refrigerator to reach temperatures below 1 K. The system operates in the frequency range of 125–130 GHz, with a homodyne detection. A nuclear-magnetic-resonance (NMR) measurement system was also developed in this system as the extension for millimeter-wave ESR/NMR double magnetic-resonance (DoMR) experiments. Several types of Fabry–Pérot-type resonators (FPR) have been developed: A piezo actuator attached to an FPR enables an electric tuning of cavity frequency. A flat mirror of an FPR has been fabricated using a gold thin film aiming for DoMR. ESR signal was measured down to 0.09 K. Results of ESR measurements of an organic radical crystal and phosphorous-doped silicon are presented. The NMR signal from 1H contained in the resonator is also detected successfully as a test for DoMR.  相似文献   

5.
Electron paramagnetic resonance (EPR) single-crystal rotation studies at very high frequency (249.9 GHz) of transition metal ions with electron spins greater than one-half are reported. At 249.9 GHz, the spectra are in the high-field limit despite large zero-field splittings. This leads to a considerable simplification of the spectra, and aids in their interpretation. Single-crystal 249.9 GHz EPR spectra of Ni2+ in Ni2CdCl6· 12H2O, Mn2+ (0.2%) in ZnV2O7, and Fe3+ (2%) in CaYA104 were recorded at 253 K in an external magnetic field of up to 9.2 T, along with those at X-band and Q-band frequencies at 295 K and lower temperatures. The goniometer used at 249.9 GHz for single-crystal rotation is based on a quasi-optical design and is an integral part of a special Fabry-Pérot resonator. The values of the spin-Hamiltonian parameters were estimated from a simultaneous fitting of all of the observed line positions at several microwave frequencies recorded at various orientations of each crystal with respect to the external magnetic field with least-squares fitting in conjunction with matrix diagonalization. Estimates of zero-field splitting parameterD at room temperature are: for Ni2+, about ?31 GHz (site I) and about ?7 GHz (site II); for Mn2+, about 6 GHz; and for Fe3+, about 29 GHz.  相似文献   

6.
The temperature dependence of the magnetic susceptibility (300 → 1.6°K) and ESR (300 → 6°K) of amorphous germanium have been determined. There is a temperature dependent paramagnetic term to the magnetic susceptibility due to a density of localized unpaired spins (dangling bonds) of 1019 spins/cm3. There is an antiferromagnetic interaction between at least some of these localized unpaired spins with an exchange energy estimated by various models to be on the order of a degree Kelvin.  相似文献   

7.
We have developed high-field and multifrequency (HFMF) electron spin resonance (ESR) apparatus for the magnetic fields up to 65 T at frequencies up to about 6 THz. In addition to this pulsed field ESR apparatus, we are making a multifrequency ESR apparatus with very high sensitivity in a static field. We report the results of ESR studies on BaCoV2O8 and NiGa2S4, followed by recent developments and future plans of our HFMF ESR apparatus.  相似文献   

8.
A multiextreme (high-field, low-temperature, high-pressure and nanoscale) electron spin resonance (ESR) measurement system is under development in Kobe. In this connection, our recent development is introduced and two applications of our high-frequency high-field ESR are described. High-frequency high-field ESR measurements of dioptase (Cu6Si6O18·6H2O), which has an interesting antiferromagnetic Cu2+ network, have been performed using a pulsed magnetic field of up to 55 T. Antiferromagnetic resonances (AFMR) are clearly observed at 4.2 K with the light sources of up to 1017 GHz. However, a deviation from the conventional two-sublattice AFMR theory is observed in the high field. Temperature dependence of the X-band and high-frequency ESR has been also observed in the triangular lattice antiferromagnet EtMe3P[Pd(dmit)2]2 which shows the spin-Peierls-like transition below T c = 25 K. The preliminary field dependence of the spin gap estimated from the analyses of our ESR results has been shown in connection with the previous magnetic susceptibility results.  相似文献   

9.
Chromium ions implantation was performed into metal–organic chemical vapor deposition grown GaN thin film of thickness about 2 µm at 5 × 1016 cm?2 fluence. Implantation was performed at various substrate temperatures (RT, 250, 350 °C). Rapid thermal annealing was employed at 900 °C to remove implantation-induced damages as well as for activation of dopant. Structural study was performed by Rutherford backscattering and channeling spectrometry and high-resolution X-ray diffraction. To confirm magnetic properties at room temperature, hysteresis loops were obtained using alternating gradient magneto-meter. Well-defined hysteresis loops were achieved at 300 K in implanted and annealed samples. Temperature-dependent magnetization indicated magnetic moment at 5 K and retain up to 380 K.  相似文献   

10.
Direct electron spin resonance (ESR) on a high mobility two-dimensional electron gas in a single AlAs quantum well reveals an electronic g factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimum linewidth of 7 G. The ESR amplitude and its temperature dependence suggest that the signal originates from the effective magnetic field caused by the spin-orbit interaction and a modulation of the electron wave vector caused by the microwave electric field. This contrasts markedly with conventional ESR that detects through the microwave magnetic field.  相似文献   

11.
Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of ?110 (14N TEMPOL) and ?165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about ?110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.  相似文献   

12.
We have examined the magnetic properties of the heavy electron compounds YbAgGe and YbPtIn by 170Yb M?ssbauer spectroscopy down to 0.1 K, and the crystal field properties of YbAgGe by Perturbed Angular Correlations (PAC) measurements up to 900 K. In YbAgGe, we show that each of the two magnetically ordered phases below 0.8 K involves a specific incommensurate modulation of the Yb moment. An analysis of existing low temperature specific heat data suggests the persistence of fluctuations of the correlated Yb spins down to 0.1 K. The PAC data allow to discriminate among proposed Yb3+ crystal field level schemes. In YbPtIn, we show that the low temperature magnetic order phase has an antiferro-para structure, where zero moment Yb ions coexist with large moment ones, and that a 90° moment reorientation occurs at 1.4 K.  相似文献   

13.
The sensitivity of a high-frequency electron spin resonance (ESR) spectrometer depends strongly on the structure used to couple the incident millimeter wave to the sample that generates the ESR signal. Subsequent coupling of the ESR signal to the detection arm of the spectrometer is also a crucial consideration for achieving high spectrometer sensitivity. In previous work, we found that a means for continuously varying the coupling was necessary for attaining high sensitivity reliably and reproducibly. We report here on a novel asymmetric mesh structure that achieves continuously variable coupling by rotating the mesh in its own plane about the millimeter-wave transmission-line optical axis. We quantify the performance of this device with nitroxide spin label spectra in both a lossy aqueous solution and a low-loss solid-state system. These two systems have very different coupling requirements and are representative of the range of coupling achievable with this technique. Lossy systems, in particular, are a demanding test of the achievable sensitivity and allow us to assess the suitability of this approach for applying high-frequency ESR, e.g., to the study of biological systems at physiological conditions. The variable coupling technique reported on here allows us to readily achieve a factor of ca. 7 improvement in the signal-to-noise ratio at 170 GHz and a factor of ca. 5 at 95 GHz over what has previously been reported for lossy samples.  相似文献   

14.
We report the experimental results of electron spin resonance in high magnetic fields up to about 53 T on the quasi-two-dimensional triangular lattice antiferromagnet NiGa2S4. The temperature dependence of the resonance field at 584.8 GHz shows a steep change below about 30 K, indicating a development of the short-range correlation. The frequency dependence of the resonance field at the lowest temperature for Hc is explained by one of the helical resonance modes. These experimental results suggest that the short-range order is well developed at low temperatures, and the resonance mode is described by a conventional spin wave theory.  相似文献   

15.
Abstract

The electronic transport properties of Dirac fermions in chemical vapour-deposited single-layer epitaxial graphene on anSiO2/Si substrate have been investigated using the Shubnikov–de Haas (SdH) oscillations technique. The magnetoresistance measurements were performed in the temperature range between 1.8 and 43 K and at magnetic fields up to 11 T. The 2D carrier density and the Fermi energy have been determined from the period of the SdH oscillations. In addition, the in-plane effective mass as well as the quantum lifetime of 2D carriers have been calculated from the temperature and magnetic field dependences of the SdH oscillation amplitude. The sheet carrier density (1.42 × 1013 cm?2 at 1.8 K), obtained from the low-field Hall Effect measurements, is larger than that of 2D carrier density (8.13 × 1012 cm?2). On the other hand, the magnetoresistance includes strong magnetic field dependent positive, non-oscillatory background magnetoresistance. The strong magnetic field dependence of the magnetoresistance and the differences between sheet carrier and 2D carrier density can be attributed to the 3D carriers between the graphene sheet and the SiO2/Si substrate.  相似文献   

16.
We have studied the magnetic cluster compound Nb6F15 which has an odd number of 15 valence electrons per (Nb6F12)3+ cluster core, as a function of temperature using nuclear magnetic resonance, magnetic susceptibility, electron magnetic resonance and neutron powder diffraction. Nuclear magnetic resonance of the 19F nuclei shows two lines corresponding to the apical Fa?a nucleus, and to the inner Fi nuclei. The temperature dependence of the signal from the Fi nuclei reveals an antiferromagnetic ordering at T < 5 K, with a hyperfine field of ~2 mT. Magnetic susceptibility exhibits a Curie–Weiss behavior with T N ~5 K, and μ eff ~1.57 μB close to the expected theoretical value for one unpaired electron (1.73 μB). Electron magnetic resonance linewidth shows a transition at 5 K. Upon cooling from 10 to 1.4 K, the neutron diffraction shows a decrease in the intensity of the low-angle diffuse scattering below Q ~0.27 Å?1. This decrease is consistent with emergence of magnetic order of large magnetic objects (clusters). This study shows that Nb6F15 is paramagnetic at RT and undergoes a transition to antiferromagnetic order at 5 K. This unique antiferromagnetic ordering results from the interaction between magnetic spins delocalized over each entire (Nb6F 12 i )3+ cluster core, rather than the common magnetic ordering.  相似文献   

17.
We present the first direct electron spin resonance (ESR) on a 2D electron gas in a IIIV semiconductor. ESR on a high mobility 2D electron gas in a single AlAs quantum well reveals an electronic g-factor of 1.991 at 9.35 GHz and 1.989 at 34 GHz with a minimal linewidth of 7 Gauss. Both the signal amplitude and its dependence on the position and orientation of the sample in the cavity unambiguously demonstrate that the spin transitions in our experiment are caused by the microwave electric field. We present a model that ascribes the spin transitions to the effective magnetic field acting on the electron spins that arises from (Bychkov–Rashba) spin-orbit interaction and the modulation of the electron wavevector around kF induced by the microwave electric field.  相似文献   

18.
The magnetic structure of NiFe2O4 nanoparticles has been investigated by means of Mössbauer spectra at T?=?4.2 K in applied fields up to 12 T. Four samples were studied, with mean particle diameters ranging from 4.3 to 8.9 nm. All spectra could be decomposed into three sextets, two corresponding to the ferrimagnetic sublattices of Fe ions in the spinel structure (core) and the third one to randomly frozen spins near the particle surface (shell). The shell thickness, calculated from the fraction of disordered spins, was found to be about one-third of the particle radius at H app?=?0 and to decrease with the applied field toward a common limit of ~0.4 nm. The mean canting angle relative to the field was also found to decrease for increasing fields, at a rate inversely correlated to the particle size.  相似文献   

19.
Magnetic rotation spectroscopy signals of the nitric oxide (NO) fundamental band near 5 μm have been observed and compared with calculated signals. This spectroscopic approach exploits magnetic field modulation in the Faraday configuration for very sensitive detection of NO. Line shapes and strengths of the Faraday signals depend on molecular parameters, like J and Ω quantum numbers of the transitions involved, and on experimental parameters, like pressure of the gas sample and applied external magnetic field strength. In this study we implemented a software model which provides a simulation of the complete v=1–0 Faraday spectrum of NO. The algorithm considers the magnetic field modulation, the collisional and Doppler broadening of the line shapes, and the line intensities of 14NO and 15NO fundamental band lines. Optimum values for pressure and magnetic field modulation for maximum sensitivity are given. Suitable spectral windows for simultaneous detection of 14NO and 15NO are discussed. Experimental data were obtained in the wavenumber region from 1840 to 1900 cm?1 by means of a CO sideband laser and a quantum cascade laser. Comparison between calculated and observed signals shows excellent agreement.  相似文献   

20.
Sealed, deoxygenated single-wall carbon nanotubes show two characteristic electron paramagnetic resonance (EPR) signals at g = 2.07 and g = 2.00 in the temperature range from 300 to 50 K. Reversible interconversion between both components was observed. The large g-shift and the temperature dependence of the EPR susceptibility of the g = 2.07 signal indicate that this signal can be attributed to itinerant spins. At low temperatures only the g = 2.00 signal remained, which could be further characterized using microwave frequencies up to 320 GHz. The direct current conductivity of a partially aligned sample was also measured. The room temperature value was estimated as 0.7 (Ωcm)?1. The observed temperature dependence can be described by assuming temperature-activated hopping in a small-gap semiconductor with an activation energy of 3.5 meV, similar to the characteristics of the previously measured 9.4 GHz microwave conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号