首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A DNA-modified carbon paste electrode (DNA-CPIE) was designed by using a mixture of the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and paraffin oil as the binder. The electrochemistry of rutin at the DNA-CPIE was investigated by cyclic voltammetry and differential pulse voltammetry. Rutin exhibits a pair of reversible redox peaks in buffer solutions of pH 3.0, and respective electrochemical parameters are established. Under the optimal conditions, the oxidative peak current is linear with the concentration of rutin in the range from 8?×?10?9 to 1?×?10?5 mol L?1, and the detection limit is 1.3?×?10?9 mol L?1 (at S/N?=?3). The electrode exhibits higher sensitivity compared to DNA modified carbon paste electrode without ionic liquid and better selectivity comparing with electrodes without DNA. It also showed good performance, stability, and therefore represents a viable method for the determination of rutin.  相似文献   

2.
Dicloran pesticide is used to inhibit the fungal spore germination for different crops. Because of the increasing application of pesticides, reliable and accurate analytical methods are necessary. The aim of this work is designing the highly selective sensor to determine the dicloran in biological and environmental samples. Multi-walls carbon nanotubes and a molecularly imprinted polymer (MIP) were used as modifiers in the sensor composition. A dicloran MIP and a nonimprinted polymer (NIP) were synthesized and applied in the carbon paste electrode. After the optimization of electrode composition, it was used to determine the concentration of analyte. Parameters affecting the sensor response were optimized, such as sample pH, electrolyte concentration and its pH, and the instrumental parameters of square wave voltammetry. The MIP-CP electrode showed very high recognition ability in comparison with NIP-CP. The obtained linear range was 1 × 10?6 to 1 × 10?9 mol L?1. The detection limit was 4.8 × 10?10 mol L?1. This sensor was used to determine the dicloran in real samples (human urine, tap and river water samples) without special sample preparation before analysis. All important parameters were optimized, improving the sensor response considerably.  相似文献   

3.
Construction and feature of a nanocomposite modified carbon paste electrode for aluminum(III) ion determination based on N,N′-dipyridoxyl (1,2-cyclohexanediamine) (PYCA) as a novel selector material will be covered by this paper. The optimum composition, Nernstian slope/linear range/detection limit in the forms of calibration graph, response time, utilizable pH range, repeatability and precision of measurements of the aluminum(III) ion using the new fabricated Al3+-CPE was evaluated. The optimal composition which performed over Al+3 ion concentration range 1.0 × 10?8 mol L?1–1.0 × 10?1 mol L?1 with near-Nernstian slope equal 20.9 ± 0.2 mV decade?1 and low detection limit about 5.0 × 10?9 mol L?1, was formed of ionophore (PYCA 3 %), binder (paraffin oil 30 %), modifier [multi-wall carbon nanotubes (MWCNTs) 1 %] & [Nanosilica (NS) 0.5 %], and inert matrix (graphite powder 65.5). The request time to give rise Nernstian response of electrode for concentrations from 1.0 × 10?8 mol L?1 to 1.0 × 10?1 mol L?1 of Al3+ ion solution was estimated about ~6 s. The new Al3+-CPE was applied in pH range 2.0–5.0 with no consequential change in potential response. To verify the selectivity of electrode toward aluminum(III) ion in the presence of different metallic cations, matched potential method was used. The obtain results in analytical applications reflect the excellent ability of this electrode to play the role as endpoint indicator electrode in both titration and direct potentiometric measurements.  相似文献   

4.
A composite electrode was fabricated from Cu2O powder, carboxyl-functionalized multi-wall carbon nanotubes (MWCNT-COOH), and paraffin oil in the proportions 51:17:32 (w/w). This composite electrode was used for amperometric detection (CZE–AD) in simultaneous capillary zone electrophoretic analysis of chlorogenic acid, rutin, sucrose, glucose, mannose, and fructose in tobacco samples. Under the optimum conditions, the six analytes could be separated in 100 mmol L?1 NaOH buffer within 30 min. Good linearity was achieved in the range 1 × 10?7–1 × 10?4 mol L?1 for the two polyphenols and 5 × 10?6–1 × 10?3 mol L?1 for the four sugars. The detection limits (S/N = 3) for the polyphenols and sugars were as low as 10?8 mol L?1 and 10?6 mol L?1, respectively.  相似文献   

5.
A new thiomorpholine-functionalized nanoporous mesopore Mobil Composition of Matter No. 41 (MCM-41), abbreviated as TMMCM-41, was synthesized and applied as a sensing material in construction of a cadmium carbon paste electrode. The electrode composition of 20.1%wt TMMCM-41, 54.0% graphite powder, 25.9% paraffin oil showed the stable potential response to Cd2+ ions with the Nernstian slope of 28.6 mV decade?1 (±1.8 mV decade?1) over a wide linear concentration range of 10?6 to 10?2?mol L?1 with a detection limit of 6?×?10?7 mol L?1. The electrode has fast response time and long-term stability (more than 4 months). The proposed electrode was used to determine the concentration of cadmium in tap water contaminated by this metal and cadmium electroplating waste water samples.  相似文献   

6.
A voltammetric sensor was fabricated by applying a Nafion and multi-walled carbon nanotubes (MWCNTs) composite film on the surface of a carbon ionic liquid electrode (CILE), which was prepared by mixing 1-butyl-3-methylimidazolium hexafluorophosphate with graphite powder. The electrochemical behavior of adenine on the Nafion-MWCNTs/CILE was investigated in pH 5.5 buffer solution. Adenine showed an irreversible adsorption-controlled oxidation reaction with enhanced electrochemical response, which was due to the presence of high conductive MWCNTs on the CILE surface. The electrochemical parameters of adenine electro-oxidation were determined, and the experimental conditions were optimized. Under the optimal conditions, the oxidation peak current was linear to the adenine concentration over the range of 1.0?×?10?7 to 7.0?×?10?5 mol L?1 with a detection limit of 3.3?×?10?8 mol L?1 (signal/noise?=?3). The electrode showed good stability and selectivity, and was further applied to milk powder samples with satisfactory results.  相似文献   

7.
A sensitive and selective imprinted electrochemical sensor for the determination of aflatoxin B1 (AFB1) was constructed on a glassy carbon electrode by stepwise modification of functional multiwalled carbon nanotubes (MCNTs), Au/Pt bimetallic nanoparticles (Au/PtNPs), and a thin imprinted film. The fabrication of a homogeneous porous poly o-phenylenediamine (POPD)-grafted Au/Pt bimetallic multiwalled carbon nanotubes nanocomposite film was conducted by controllable electrodepositing technology. The sensitivity of the sensor was improved greatly because of the nanocomposite functional layer; the proposed sensor exhibited excellent selectivity toward AFB1 owing to the porous molecular imprinted polymer (MIP) film. The surface morphologies of the modified electrodes were characterized using a scanning electron microscope. The performance of the imprinted sensor was investigated by cyclic voltammetry, differential pulse voltammetry, and electrochemical impedance spectroscopy in detail. A linear relationship between the sensor response signal and the logarithm of AFB1 concentrations ranging from 1?×?10?10 to 1?×?10?5 mol L?1 was obtained with a detection limit of 0.03 nmol L?1. It was applied to detect AFB1 in hogwash oil successfully.  相似文献   

8.
《Analytical letters》2012,45(16):2445-2454
A novel voltammetric sensor using multi-wall carbon nanotubes (MWNTs) coupled with Nafion modified glassy carbon electrode (GCE) was developed for the detection of methylparaben (MP). The sensor exhibited good electrocatalytic activity toward the oxidation of MP in the phosphate buffer solution (PBS, pH 6.5). It displayed good sensitivity, repeatability, reproducibility, and long-term stability. Under the optimized conditions, the anodic peak current was linear with the concentration of MP in the range of 3 × 10?6 mol L?1 to 1 × 10?4 mol L?1. The detection limit was 1 × 10?6 mol L?1. The proposed method was successfully applied to determine MP in cosmetics with satisfactory results.  相似文献   

9.
《Analytical letters》2012,45(3):571-583
Abstract

A fast potentiometric determination method has been reported for pentazocine in human plasma without complicated pretreatments using a coated-wire potentiometric selective electrode. The sensing membrane was made by incorporating of ion-association complexes of pentazocine cation and sodium tetraphenyl borate (NaTPB) in a polyvinyl chloride. The sensor exhibited fast, stable, and linear Nernstian response over the range of 5 × 10?5 to 0.1 mol L?1 pentazocine with a slope of 57.8 mV per decade and with detection limit of 3.2 × 10?5 mol L?1. The proposed sensor has been used for determination of pentazocine in human plasma and urine.  相似文献   

10.
A mesoporous silica-based hybrid material composed of silica xerogel modified with an ionic silsesquioxane, which contains the 1,4-diazoniabicyclo[2.2.2]octane chloride group, was obtained. The silsesquioxane film is highly dispersed on the surface. This hybrid material was utilized to develop a carbon paste electrode (CPE) for determination of methyl parathion. Transmission FTIR, elemental analysis and N2 adsorption–desorption isotherms were used for characterization of the material. The electrochemical behavior of methyl parathion was evaluated by cyclic voltammetry and differential pulse voltammetry. It was observed a linear response to methyl parathion in the concentration range from 1.25 × 10?7 to 2.56 × 10?6 mol L?1 by employing the carbon paste electrode, in Britton–Robinson buffer solution (pH 6). The achieved detection limit (3 SD of the blank divided by the slope of calibration curve) was 0.013 µmol L?1 and sensitivity was 6.3 µA µmol L?1. This result shows the potentiality of this electrode for application as electrochemical sensor for methyl parathion.  相似文献   

11.
《Analytical letters》2012,45(7):1321-1332
Abstract

A novel amperometric nitric oxide (NO) sensor based on a glassy carbon electrode modified with thionine and Nafion films has been developed. The oxidation peak current of NO increased significantly at the poly(thionine)/Nafion‐modified glassy carbon electrode (GCE), which can be used for the detection of NO. The oxidation peak current was linear with the concentration of nitric oxide over the range from 3.6×10?7 to 6.8×10?5 mol · L?1, and the detection limit was 7.2×10?8 mol · L?1. This nitric oxide sensor showed high selectivity to nitric oxide determination, and some potential interference could be eliminated effectively. The nitric oxide sensor has been applied to monitor NO release from rat kidney stimulated by L‐arginine. The results indicated the applicability of the NO sensor to biomedical samples.  相似文献   

12.
An electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles using a potentiostatic method. The effects of pH, ratio between template molecule and monomer, number of cycles for electropolymerization, and of the solution for extraction were optimized. The current of the electro-active model system hexacyanoferrate(III) and hexacyanoferrate(IV) decreased linearly with successive addition of ThPh in the concentration range between 4.0?×?10?7?~?1.5?×?10?5 mol·L?1 and 2.4?×?10?4?~?3.4?×?10?3 mol·L?1, with a detection limit of 1.0?×?10?7 mol·L?1. The sensor has an excellent recognition capability for ThPh compared to structurally related molecules, can be regenerated and is stable.
Figure
In this paper, an electrochemical sensor for theophylline (ThPh) was prepared by electropolymerizing o-phenylenediamine (o-PD) on a glassy carbon electrode in the presence of ThPh via cyclic voltammetry, followed by deposition of gold nanoparticles to enhance the sensitivity of the sensor. Therefore, the sensor showed a high sensitivity for ThPh determining. Peak current of [Fe(CN)6]3?/[Fe(CN)6]4? varied linearly with the concentration of ThPh in the range of 4.0×10-7~1.5×10-5 mol·L-1 and 2.4×10-4~3.4×10-3 mol·L-1, and the detection limit reached 1.0×10-7 mol·L-1. Compared to structurally related molecules, the sensor also has a high recognition capability for ThPh. With excellent regeneration property and stability, the present sensor maybe provides a new class of polymer modified electrodes for sensor applications.  相似文献   

13.
《Analytical letters》2012,45(5):885-897
Hemoglobin (Hb) was successfully immobilized on a gold electrode modified with gold nanoparticles (AuNPs) via a molecule bridge 1,6-hexanedithiol (HDT). The AFM images suggested that the HDT/gold electrode could adsorb more AuNPs. UV-vis spectra indicated that Hb on AuNPs/HDT film retained its near-native secondary structures. The electrochemical behaviors of the sensor were characterized with cyclic voltammetric techniques. The resultant electrode displayed an excellent electrocatalytical response to the reduction of hydrogen peroxide (H2O2). The linear relationship existed between the catalytic current and the H2O2 concentration ranging from 5.0 × 10?8 to 1.0 × 10?6 mol · L?1. The detection limit (S/N = 3) was 1.0 × 10?8 mol · L?1.  相似文献   

14.
This work proposes a novel biomimetic sensor for the potentiometric transduction of rivastigmine based on molecularly imprinted polymer (MIP). Using the Taguchi method, this study analyzed the optimum conditions for preparing the MIP‐based membranes. The rank order of each controllable factor was also determined. MIP‐based membranes exhibited a Nernstian response (30.7±1.1 mV decade?1) in a concentration range from 1.0×10?5 to 1.0×10?2 mol L?1 with a LOD of 6.3×10?6 mol L?1. The sensor was successfully applied to the determination of rivastigmine concentrations in human serum, plasma, urine, rat brain and tablets.  相似文献   

15.
《Analytical letters》2012,45(12):2171-2185
Abstract

The electrooxidative behavior of citalopram (CTL) in aqueous media was studied by cyclic voltammetry (CV) and square-wave voltammetry (SWV) at a glassy-carbon electrode. The electrochemical behaviour of CTL involves two electrons and two protons in the irreversible and diffusion controlled oxidation of the tertiary amine group. The maximum analytical signal was obtained in a phosphate buffer (pH = 8.2). For analytical purposes, an SWV method and a flow-injection analysis (FIA) system with amperometric detection were developed. The optimised SWV method showed a linear range between 1.10 × 10?5–1.20 × 10?4 mol L?1, with a limit of detection (LOD) of 9.5 × 10?6 mol L?1. Using the FIA method, a linear range between 2.00 × 10?6–9.00 × 10?5 mol L?1 and an LOD of 1.9 × 10?6 mol L?1 were obtained. The validation of both methods revealed good performance characteristics confirming applicability for the quantification of CTL in several pharmaceutical products.  相似文献   

16.
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of multiwalled carbon nanotubes and Amberlite IR-120. The anodic stripping voltammograms depend, to a large extent, on the composition of the modified electrode and the preconcentration conditions. Under optimum conditions, the anodic peak current at around ?0.57 V is linearly related to the concentration of Pb(II) in the range from 9.6?×?10?8 to 1.7?×?10?6 mol L?1 (R?=?0.998). The detection limit is 2.1?×?10?8 mol L?1, and the relative standard deviation (RSD) at 0.24?×?10?6 mol L?1 is 1.7% (n?=?6). The modified electrode was applied to the determination of Pb(II) using the standard addition method; the results showed average relative recoveries of 95% for the samples analysed.
Figure
A new composite electrode is described for anodic stripping voltammetry determination of Pb(II) at trace level in aqueous solution. The electrode is based on the use of MWCNT and Amberlite IR-120. The method showed a good linearity for 9.6?×?10?8 - 1.7?×?10?6 mol L?1 and detection limit of 2.1?×?10?8 mol L?1.  相似文献   

17.
A new PVC membrane coated graphite electrode for cesium ion based on 4′,4″(5′)di–tert-butyl di-benzo-18-crown-6 (DTBDB18C6) as ionophore was prepared. The electrode shows a near Nernstian response of 57.0 ± 1.8 mV decade?1 over a wide activity range of 6.0 × 10?6–1.0 × 10?1 mol L?1 with a limit of detection 4.0 × 10?6 mol L?1. The proposed electrode is suitable for use in aqueous solution in the pH range of 3.0–9.5. It has a fast response time of 10 s and can be used for at least 1 month without any considerable divergence in potential. The selectivity coefficients for Cs+ ion with respect to ammonium, alkali, alkaline earth and some selected transition metal ions were determined and showed a superior selectivity over Li+, Na+ and alkaline earth metal ions. The new electrode was applied for determination of Cs+ in spiked tap water. The electrode was also used as indicator electrode in potentiometric titration of Cs+ with sodium tetraphenyl borate.  相似文献   

18.
In this work, we described an electrochemical sensor using a nanocomposite based on graphene oxide (GO), silver nanoparticles (AgNP), and disordered mesoporous silica (SiO2), which was used for the determination of bisphenol A in water samples. Initially, the hybrid material SiO2/GO was synthesized via sol-gel process, subsequently decorated with AgNP with an approximate 20 nm particle size prepared directly on the surface of the SiO2/GO using N, N-dimethylformamide (DMF) as an agent reducer. A glassy carbon electrode was modified with SiO2/GO/AgNP and used in developing a sensitive electrochemical sensor for the determination of bisphenol A in phosphate buffer 0.1 mol L?1 (pH 7.0). The detection limit was 45.2 nmol L?1 with a linear response range between 1.0 × 10?7 and 2.6 × 10?6 mol L?1 and a sensitivity of 1.27 × 10?7 A mol?1 L. Finally, the optimized electrochemical sensor was used for the quantitation of endocrine interfering in natural waters.  相似文献   

19.
A new modified carbon paste electrode for determination of Cu2+ made in our laboratory that used a new synthesized macrocycle 7,16-diaza-1-thia-4,10,13,19-tetraoxa-6,17-dioxo-2,3;20,21-dinaphtho-cyclouneicosane as modifier. This sensor exhibits a good affinity toward copper (II) ions over a wide variety of other metal ions. The electrode exhibits a Nernstian slope of 30 (±0.5) mV per decade for copper (II) ions over a wide concentration range (1.0 × 10?8–1.0 × 10?2 mol L?1), with a limit of detection of 7.0 × 10?9 mol L?1 (~0.45 ppb). It has a response time of 30 s and can be used for at least 3 months without any considerable divergence in responses. The potentiometric response of the electrode is independent of the pH of test solution in the pH range 3.5–7.5. Finally, it was successfully used as an indicator electrode for determination of copper (II) in real samples such as Karoun river and tap water.  相似文献   

20.
A simple but highly sensitive electrochemical sensor for the determination of 8-azaguanine based on graphene-Nafion nanocomposite film-modified glassy carbon electrode (G-Nafion/GCE) was reported. The electrochemical behaviors of 8-azaguanine at G-Nafion/GCE were investigated by cyclic voltammetry (CV), square wave voltammetry (SWV), chronoamperometry (CA), and chronocoulometry (CC). The results showed that the electrochemical sensor exhibited excellent electrocatalytic activity to 8-azaguanine. 8-Azaguanine can be effectively accumulated at G-Nafion/GCE and produce a sensitive anodic peak, due to the synergetic functions of graphene and Nafion. Under the selected conditions, the modified electrode in pH 1.98 Britton-Robinson buffer solution showed a linear voltammetric response to 8-azaguanine within the concentration range of 5.0 × 10?8~3.0 × 10?5 mol L?1, with the detection limit of 1.0 × 10?8 mol L?1. And, the method was also applied to detect 8-azaguanine in spiked human urine with wonderful satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号