首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We describe a new triply tuned (e(-), (1)H, and (13)C) resonance structure operating at an electron Larmor frequency of 139.5 GHz for dynamic nuclear polarization (DNP) and electron nuclear double-resonance (ENDOR) experiments. In contrast to conventional double-resonance structures, the body of the microwave cavity simultaneously acts as a NMR coil, allowing for increased efficiency of radiofrequency irradiation while maintaining a high quality factor for microwave irradiation. The resonator design is ideal for low-gamma-nuclei ENDOR, where sensitivity is limited by the fact that electron spin relaxation times are on the order of the RF pulse lengths. The performance is demonstrated with (2)H ENDOR on a standard perdeuterated bis-diphenylene-phenyl-allyl stable radical. In DNP experiments, we show that the use of this resonator, combined with a low microwave power setup (17 mW), leads to significantly higher (1)H signal enhancement (epsilon approximately 400 +/- 50) than previously achieved at 5-T fields. The results emphasize the importance of optimizing the microwave B(1) field by improving either the quality factor of the microwave resonator or the microwave power level.  相似文献   

2.
Pulsed-field-gradient nuclear magnetic resonance (NMR) combined with time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) was applied to study the reduction of guanosyl radicals in reactions with the proteins hen egg white lysozyme (HEWL) and bovine α-lactalbumin (BLA) in their native state. Guanosyl radicals were generated photochemically in the reaction of guanosine-5′-monophosphate with photosensitizer, triplet-excited 2,2′-dipyridyl. In this reaction, at pH 5 guanosyl cation radical is formed, which deprotonates to yield the neutral guanosyl radical. To minimize the contribution of the cation radical, phosphate buffer was added, which accelerates the deprotonation of guanosyl cation radical. From model simulations of CIDNP kinetics the rate constants of the reduction were found to be (3.1 ± 0.5) × 107 M?1s?1 for HEWL and (1.6 ± 0.4) × 107 M?1s?1 for BLA. Also, experiments were carried out at the conditions for denatured HEWL, i.e., at 50 °C in the presence of 10 M urea-d4. The rate constant of the reduction of guanosyl radical in this case was (3.6 ± 0.5) × 108 M?1s?1.  相似文献   

3.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large 1H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16°C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26°C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)−1, in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is −0.0187. It is shown that these results agree very well with an analysis where the electron–dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26°C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

4.
The nitroxide-based 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical is widely used in 13C dynamic nuclear polarization (DNP) due to its relatively low cost, commercial availability, and effectiveness as polarizing agent. While a large number of TEMPO derivatives are available commercially, so far, only few have been tested for use in 13C DNP. In this study, we have tested and evaluated the 13C hyperpolarization efficiency of eight derivatives of TEMPO free radical with different side arms in the 4-position. In general, these TEMPO derivatives were found to have slight variations in efficiency as polarizing agents for DNP of 3 M [1-13C] acetate in 1:1 v/v ethanol:water at 3.35 T and 1.2 K. X-band electron paramagnetic resonance (EPR) spectroscopy revealed no significant differences in the spectral features among these TEMPO derivatives. 2H enrichment of the ethanol:water glassing matrix resulted in further improvement of the solid-state 13C DNP signals by factor of 2 to 2.5-fold with respect to the 13C DNP signal of non-deuterated DNP samples. These results suggest an interaction between the nuclear Zeeman reservoirs and the electron dipolar system via the thermal mixing mechanism.  相似文献   

5.
The photochemical reaction of 2-methyl-1,4-naphthoquinone in sodium dodecyl-sulphate micellar solution was investigated with an optical detection ESR apparatus working at 17.44 GHz (Ku-band). The Ku-band RYDMR spectra are obtained from the transient optical absorption and the stationary absorption of the reaction product, and the shift of the spectral peak compared with the spectra at 331 mT is reproduced well by the difference in g of the component radicals. The microwave pulse length dependence shows the quantum beat originated from the conversion between triplet ±1 states and the mixed state of singlet and triplet 0 states by the microwave field. The decay rate of the radical pair in triplet ±1 at 622 mT was determined to be 7.1 ± 1.1 × 105 s?1 by changing the irradiation time of a short (20 ns) microwave pulse with reference to the laser excitation. This value is smaller than that at 331 mT, as expected by the relaxation mechanism.  相似文献   

6.
Dynamic nuclear polarization (DNP) effects in aqueous solutions of stable 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) radicals were studied in a pulsed mode of pumping the electron paramagnetic resonance (EPR) transitions. Our fast field cycling setup allowed us to perform the EPR pumping at low magnetic fields and to detect the enhanced nuclear magnetic resonance signals at 7 T with high spectral resolution. Pumping was performed at two different frequencies, 300 MHz and 1.4 GHz, corresponding to magnetic fields around 10 and 48.6 mT, respectively. For both frequencies, the DNP enhancements were close to the limiting theoretical values of ?110 (14N TEMPOL) and ?165 (15N TEMPOL). Our pulsed experiments exploit coherent motion of the electronic spins in the radio-frequency field as seen by an oscillatory component in the dependence of the DNP effect on the radio-frequency pulse duration. The DNP enhancement was studied in detail as a function of the pulse length, duty cycle, delay between the pulses, and applied power. The analysis of the results shows that pulsed DNP experiments provide an opportunity to achieve enhancements of about ?110 with relatively low applied power as compared to the standard continuous-wave DNP experiments. An adequate theoretical approach to the problem under study is suggested.  相似文献   

7.
Electron-nuclear spin transitions in short-lived phosphonyl radicals have been investigated experimentally by nuclear magnetic resonance detection of nuclear polarization in diamagnetic reaction products in low magnetic fields (15–80 mT) for31P-centered radicals formed in laser photolysis of (2,4,6-trimethylbenzoyl)diphenylphosphine oxide and 2,4,6-trimethylbenzoylphosphonic acid dimethyl ester. A theoretical model on the basis of the numerical solution of the kinetic equation for the density matrix of a radical with one nonzero hyperfine coupling constant has been employed to study the main peculiarities of this effect and to account for the data quantitatively.  相似文献   

8.
9.
Recently a triarylmethyl-based (TAM) radical has been developed for research in biological and other aqueous systems, and in low magnetic fields, 10 mT or less, large (1)H dynamic nuclear polarization (DNP) enhancements have been reported. In this paper the DNP properties of this radical have been investigated in a considerably larger field of 1.4 T, corresponding to proton and electron Larmor frequencies of 60 MHz and 40 GHz, respectively. To avoid excessive microwave heating of the sample, an existing DNP NMR probe was modified with a screening coil, wound around the sample capillary and with its axis perpendicular to the electric component of the microwave field. It was found that with this probe the temperature increase in the sample after 4 s of microwave irradiation with an incident power of 10 W was only 16 degrees C. For the investigations, 10 mM of the TAM radical was dissolved in deionized, but not degassed, water and put into a 1-mm i.d. and 6-mm long capillary tube. At 26 degrees C the following results were obtained: (I) The relaxivity of the radical is 0.07 (mMs)(-1), in accordance with the value extrapolated from low-field results; (II) The leakage factor is 0.63, the saturation factor at maximum power is 0.85, and the coupling factor is -0.0187. It is shown that these results agree very well with an analysis where the electron-dipolar interactions are the dominant DNP mechanism, and where the relaxation transitions resulting from these interactions are governed by translational diffusion of the water molecules. Finally, the possibilities of combining DNP with magnetic resonance microscopy (MRM) are discussed. It is shown that at 26 degrees C the overall DNP-enhanced proton polarization should become maximal in an external field of 0.3 T and become comparable to the thermal equilibrium polarization in a field of 30 T, considerably larger than the largest high-resolution magnet available to date. It is concluded that DNP MRM in this field, which corresponds to a standard microwave frequency of 9 GHz, has the potential to significantly increase the sensitivity in NMR and MRI experiments of small aqueous samples doped with the TAM radical.  相似文献   

10.
Sintered oriented nanodiamond arrays with the extremely high concentrations of the nitrogen-vacancy (NV) centers (up to 103 ppm) were investigated by the W-band (94 GHz) electron spin echo electron paramagnetic resonance techniques. The NV centers were fabricated by the high-pressure high-temperature sintering of detonation nanodiamonds (DND) without the post or prior irradiation of the samples. The processes of polarization and recovery of the equilibrium population of the spin sublevels by optical and microwave pulses have been examined at room temperature in high magnetic fields corresponding to the fine-structure transitions for the NV defects at 94 GHz (3,250–3,450 mT). A long spin coherence time of 1.6 μs and spin–lattice relaxation time of 1.7 ms were measured. The results were compared with those obtained on the NV centers fabricated by the irradiation and subsequent annealing of the commercially available bulk diamonds. It was shown that the relaxation characteristics of the NV defects were similar in the both types of the samples despite the extremely high concentrations of NV defects and isolated nitrogen donors in the sintered DND.  相似文献   

11.
Dynamic Nuclear Polarization (DNP) of the 13C nucleus has been investigated for [1-13C]pyruvic acid, doped with the trityl radical OX063Me, at 4.64 T and 1.15 K. The dependence of the polarization on microwave frequency, radical concentration and electron saturation was studied. For optimized conditions, a 13C polarization equal to 64 ± 5% was obtained, an increase by more than a factor of two compared with earlier results at 3.35 T of the same system. It was furthermore observed that the addition of gadolinium, which resulted in a twofold polarization increase at 3.35 T, only resulted in a minor improvement at 4.64 T. The dependence of the electron saturation on microwave frequency and microwave power was quantified by first moment measurements which were obtained by nucleus–electron double resonance (NEDOR) experiments. Complete electron saturation was observed for a microwave frequency close to the centre frequency of the ESR line, and by using maximum power of the microwave source. The DNP build-up time at 4.64 T (3000 s) was prolonged by approximately a factor three over the build-up time at 3.35 T (1200 s). However, after approximately 20 min of microwave irradiation the polarization at 4.64 T exceeded the polarization at 3.35 T.  相似文献   

12.
Electron paramagnetic resonance (EPR) spectroscopy was applied to measure the influence of two aminoglycoside antibiotics: gentamicin and kanamycin on free radical propertis of DOPA-melanin. DOPA-melanin was formed by oxidative polymerization of 3,4-dihydroxyphenylalanine. Different concentrations of gentamicin and kanamycin (from 1·10−4 to 1·10−2 M) were used. o-Semiquinone free radicals with ag factor of 2.0043 were found in all studied melanin samples. Their concentrations in the DOPA-melanin-drug complexes were higher than in DOPA-melanin, and increased with the increase of gentamicin and kanamycin concentration. A single EPR line of the analyzed samples (ΔB pp, 0.48-0.52 mT) indicates that aminoglycoside antibiotics do not create a new type of free radicals in DOPA-melanin. Microwave saturation behavior of the experimental lines indicates the homogeneous broadening of resonance absorption curves for DOPA-melanin and its complexes with aminoglycosides. The EPR lines saturate at low microwave powers. Slow spin-lattice relaxation processes were characteristic for all studied melanin samples.  相似文献   

13.
Ni nanofibers with an average diameter of about 100 nm were synthesized by a simple and cost-effective electrospinning technology. The nanofibers have a polycrystalline structure and each nanofiber is composed of fine particles. The complex permittivity and permeability properties of Ni nanofibers composite have been measured in the frequency range of 1–15 GHz. The double-resonance behavior of microwave magnetic permeability is observed. Natural resonance peak happens at 4.0 GHz with the contribution of shape anisotropy. The second resonance peak around 12.5 GHz originates from exchange resonance effect. The permeability spectra were fitted with the Landau–Lifshitz–Gibert equation. The minimum reflection loss of the Ni nanofibers composite reaches ?35.4 dB at 1.3 GHz with a matching thickness of 8.4 mm, which shows promising application of the Ni nanofibers composites in microwave absorber.  相似文献   

14.
The hydrogen abstraction reactions of benzophenone in a micellar solution in the absence and presence of 1,4-cyclohexadiene are compared with time-resolved electron spin resonance (ESR) and optically detected (OD) ESR. “Pulse shift” measurement by OD-ESR, which observes the effect of a resonant microwave pulse at different delay times after laser excitation, reveals that the lifetime of the radical pair becomes much shorter in the presence of 1,4-cyclohexadiene. This explains the change of chemically induced dynamic electron polarization from spin-correlated radical pair polarization in the absence of 1,4-cyclohexadiene to conventional, E*/A polarization in its presence. The rate constants determined by this technique indicate that the escaping rate of cyclohexadienyl radical is ten times larger than those of alkyl and benzophenone ketyl radicals.  相似文献   

15.
Principles and applications are described for a form of Doppler-free optical double resonance spectroscopy which uses amplitude modulation sidebands (v L ±v) imposed on a single laser frequency (v L ). The sidebands are generated by passing the carrier radiationv L through an electro-optic modulator, driven at a radiofrequency ν, which enables the intensity and polarization characteristics of the emerging radiation to be varied for enhancement of selected double-resonance processes. The technique has been applied to infrared-infrared double-resonance studies of the Stark effects of a variety of molecules—13CH3F,12CH3F, PH3,15NH3, GeH4, SiH4, and CH3D—for which physical results are presented and discussed. These results include determination of extremely small electric dipole moments (10−3–10−5 debye) for GeH4 and CH3D and, for the dipole moment of PH3, a vibrational state dependence which is extremely small (Δμ=0.0028(5) debye for ∣Δv 2∣=1) and a rotational state dependence which is of an unexpected sign. The spectra recorded in some cases display unusual polarization and optical saturation effects which deviate markedly from the predictions of a simple three-wave polarization theory.  相似文献   

16.
A stand-alone, self-contained and transportable system for the polarization of 129Xe by spin exchange optical pumping with Rb is described. This mobile polarizer may be operated in batch or continuous flow modes with medium amounts of hyperpolarized 129Xe for spectroscopic or small animal applications. A key element is an online nuclear magnetic resonance module which facilitates continuous monitoring of polarization generation in the pumping cell as well as the calculation of the absolute 129Xe polarization. The performance of the polarizer with respect to the crucial parameters temperature, xenon and nitrogen partial pressures, and the total gas flow is discussed. In batch mode the highest 129Xe polarization of PXe = 40 % was achieved using 0.1 mbar xenon partial pressure. For a xenon flow of 6.5 and 26 mln/min, P Xe = 25 % and P Xe = 13 % were reached, respectively. The mobile polarizer may be a practical and efficient means to make the applicability of hyperpolarized 129Xe more widespread.  相似文献   

17.
The design and use of two wide-band microwave cells suitable for double resonance experiments within the resonator of a cw CO2-laser are described. The high sensitivity of the intracavity arrangement allowed very strong double-resonance and two-photon transition signals to be observed with high microwave-frequency scan-rates (1 GHz/min), and low microwave pumping powers (≦10mW/cm2). Both cells were used over a range 15 to 63 GHz, with transmission and VSWR measurements made over the range 18 to 26.5 GHz.  相似文献   

18.
The yttrium complex of 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetra(1′-13C-acetic acid) [13C]DOTA was synthesized. Fast dissolution dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) studies revealed that the 89Y, 13C, and 15N nuclei present in the complex could be co-polarized at the same optimum microwave irradiation frequency. The liquid-state spin–lattice relaxation time T 1 of these nuclei were found to be reasonably long to preserve some or most of the DNP-enhanced polarization after dissolution. The hyperpolarized 13C and 89Y NMR signals were optimized in different glassing mixtures. The overall results are discussed in light of the thermal mixing model of DNP.  相似文献   

19.
We present a dual-band and high-efficiency polarization converter in microwave regime. The proposed converter can convert a linearly polarized wave to its cross-polarized wave for two distinct bands: Ku (11.5–20.0 GHz) and Ka (28.8–34.0 GHz). It can also convert the linearly polarized wave to a circularly polarized wave at four other frequencies. The experimental results are in good agreement with simulation results for both frequency bands. The polarization conversion ratio is above 0.94 for the Ku-band and 0.90 for the Ka-band. Furthermore, the converter can achieve dual-band and high-efficiency polarization conversion over angles of incidence up to 45°. The converter is also polarization-selective in that only the x- and y-polarized waves can be converted. The physical mechanism of the dual-band polarization conversion effect is interpreted via decomposed electric field components that couple with different plasmon resonance modes of the structure.  相似文献   

20.
An algorithm is proposed for deriving the position of a stable radical relative to a photoexcited quartet state from the electron spin–spin interactions measured by double resonance methods. Intersystem crossing generates multiplet polarization in the quartet state and microwave excitation of the ±3/2 ? ±1/2 transitions converts the multiplet polarization into net polarization of the ±1/2 levels. The dependence of the electron spin echo envelope modulation (ESEEM) of the +1/2 ? ?1/2 transition on the field/frequency of the stimulation pulse is demonstrated. The algorithm is tested by comparing the predicted ESEEM patterns to those from explicit numerical calculations of the spin evolution (so-called numerical experiments), which act as a model for experiment results. The comparison demonstrates that within the point-dipole approximation it is feasible to obtain not only the distance between the two paramagnetic centers but also the orientation of the distance vector relative to the principal axes of the quartet state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号