首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The photoexcited triplet state of the carotenoid peridinin in the peridinin–chlorophyll a–protein (PCP) of the dinoflagellate Heterocapsa pygmaea has been investigated by pulsed electron paramagnetic resonance (EPR) and pulsed electron-nuclear double resonance (ENDOR) spectroscopies. The α- and β-protons hyperfine couplings of the peridinin-conjugated chain have been derived from Davies and Mims ENDOR experiments. The spectroscopic results have been compared to those obtained for the main form of the PCP complex and for the high-salt PCP form from Amphidinium carterae. The EPR features of the peridinin triplet state are very similar in the antenna complexes belonging to the two different dinoflagellate species, proving that the triplet formation pathway and the triplet localization on one specific peridinin per subcluster are common features of different PCP antennas. No significant variation of the hyperfine couplings of the peridinin triplet state has been detected between the main form of the PCP complex from A. carterae and H. pygmaea. The spectroscopic results confirm the close relationship between the Amphidinium PCP and the corresponding Heterocapsa complex at least in terms of mutual arrangement of the chlorophyll a–peridinin pair involved in photoprotection and in terms of conformation of the peridinin-conjugated chain.  相似文献   

2.
Abstract

Pair defects consisting of F centres and CN? molecules as substitutional impurity anions (FH(CN?) centres) exhibit a strong coupling between the F centres and the CN? molecules. This leads to an optical pumping of the CN? vibrations via the F centre absorption band. We performed an Electron Nuclear Double Resonance (ENDOR) investigation in order to analyse the microscopic structure of these aggregate centres. The CN? molecule occupies a [110] nearest anion position with respect to the F centre in two dynamic dipole orientations even at low temperature.  相似文献   

3.
The electronic structure of the primary electron donor (D) of the photosynthetic bacteriumRhodobacter sphaeroides is investigated by ENDOR in the photoinduced triplet state of D. Hyperfine (hf) splittings of the triplet state measured on frozen solutions are given and compared to the results obtained earlier (Lendzian F., van Willigen H., Sastry S., Möbius K., Scheer H., Feick R.: Chem. Phys. Lett.118, 145 (1985). The hf splittings found are consistent with a model of an asymmetric spin density distribution over the two bacteriochlorophyll molecules which constitute D, suggesting a mirror image symmetry of HOMO and LUMO coefficients. The could be relevant for electron transfer, in particular unidirectionality in the reaction center (RC). The first triplet state ENDOR experiments on single crystals of RC’s are also reported.  相似文献   

4.
Electron paramagnetic resonance (EPR) and electron-nuclear double resonance (ENDOR) techniques were used to investigate the electronic structure of the primary (Q A ?? ) and secondary (Q B ?? ) ubiquinone electron acceptors in reaction centers (RCs) of the photosynthetic bacteriumRhodobacter sphaeroides. To reduce the EPR linewidth, the high-spin Fe2+ present in native RCs was replaced by diamagnetic Zn2+. Experiments were performed both on frozen solutions and single crystals at microwave frequencies of 9, 35 and 94 GHz. Differences in the EPR/ENDOR spectra were observed for Q A ?? and Q B ?? , which are attributed to different environments of the quinones in the RC. The differences exhibited themselves in: (i) the g-tensors, (ii) the17O and13C hyperfine coupling (hfc) constants of the quinones labeled at the carbonyl group, (iii) the1H-hfcs of the quinone ring and (iv) the exchangeable protons hydrogen bonded to the carbonyl oxygens. From these results and from H/D exchange experiments, the following conclusions were drawn: both Q A ?? and Q B ?? have at least two hydrogen bonds of different strengths to the carbonyl oxygens. The hydrogen bonds for Q A ?? are stronger and more asymmetric than for Q B ?? . For Q A ?? the stronger bond (to O4) was assigned to His(M219) and the weaker (to O1) to Ala(M260). For Q B ?? the stronger bond (to O4) was assigned to His(L190), with several weaker bonds (to O1) to Ser(L223), Ile(224) and Gly(L225). From the temperature dependence of the hfcs of the exchangeable protons some dynamic properties of the RC were deduced. Hfcs with more distant nitrogens were observed by electron spin echo envelope modulation (ESEEM). For Q A ?? they were assigned to Nδ of His(M219) and to the peptide backbone nitrogen of Ala(M260) and for Q B ?? to Nδ of His(L190). These interactions indicate the extent of the electron wave function, which is important for the understanding of the electron transfer mechanism. Based on the magnetic resonance results, the function of the quinone acceptors in the reaction center is discussed.  相似文献   

5.
The g-factors of some members of the ground state band and of the 2+ state in the %-vibrational band have been measured in 160,162,164Dy using the Coulomb Excitation Transient Field technique, induced by 58Ni projectiles at 230, 210 and 217 MeV, respectively. The g-factors in the ground state band are consistent with a constant value, while that of the 2+% states is about 20% larger in average than those in the ground state band. Results are discussed in the frame of the systematics in this nuclear region.  相似文献   

6.
W-band (95 GHz) pulsed electron nuclear double resonance (ENDOR) measurements were carried out to determine quantitatively the first coordination shell of Mn2+ with ADP and ATPγS. The intensity of the ENDOR effect was used for counting the number of equivalent phosphate oxygens and water ligands. Titration curves for determining the binding constant of Mn2+. ADP were obtained using the intensity of the X-band EPR spectrum and the31P ENDOR effect. Both curves gave the same binding constant showing that phosphate ligand counting is plausible, provided that an appropriate reference is available. The comparison of the31P ENDOR effect of the 1:1 ADP and ATPγS complexes shows that two phosphates are coordinated in both; while in ADP they are equivalent, in ATPγS they are slightly different. The reference system for water ligand counting was Mn(H2O) 6 2+ in a H2O-D2O mixture. The results show a smaller error for the2H ENDOR effect, compared to the1H ENDOR effect. Unlike the31P ENDOR effect, the1H ENDOR effect dependence on [ADP] in the titration experiments showed that it is sensitive to variations in the zero-field splitting, which in turn alters the contributions of transitions other than the ‖?1/2>?‖1/2>. This results in a larger error in the determination of the number of water ligands.  相似文献   

7.
Selectivelyl3C-labeled ubiquinone anion radicals in protic and aprotic solvents are investigated by EPR and ENDOR spectroscopy, yielding information about the effect of hydrogen bonds on the electronicg-tensor and the carbonyl carbon13C-hf tensors. Formation of the hydrogen bonds alter theg-tensor significantly to lower values and increases theA zz , component of thel3C-hf tensor. Both effects can be explained by electrostatic interactions between the positively charged hydrogen and the electrons at the carbonyl oxygen leading to a redistribution of charge and π-spin density. Two different hydrogen bonds were obtained for UQ 0 ? which are in agreement with the results of DFT (density functional theory) calculations.  相似文献   

8.
9.
The most prominent radical formed from X-irradiation of the nucleic acid constituent analogue 5-chlorodeoxyuridine at room temperature is shown to be an α-chloro radical formed by hydrogen addition to C6. The E.S.R. analysis of the 35Cl hyperfine interaction combined with theoretical simulation of the spin hamiltonian yields tensor components axx =46·98 MHz, ayy =-10·98 MHz and azz =-17·01 MHz with a quadrupole coupling constant of eqQ=72 MHz. The principal g-tensor values are gxx =2·0012, gyy =2·00862 and gzz =2·00687. Three additional hyperfine interactions in the radical are observed combining E.S.R. and ENDOR spectroscopy. Besides the two nearly equivalent β-protons on C6 with principal values of 103·39 MHz and 110·12 MHz, there is hyperfine interaction with the 14N nucleus of nitrogen N3 (axx =9·81 MHz, ayy =azz ? 0 MHz) and with the proton of the hydrogen bonded to N3. The latter interaction has tensor components of 2·65 MHz, -10·80 MHz and -8·09 MHz as obtained from ENDOR data. The chlorine hyperfine coupling parameters are related to those observed in other α-chloro radicals. The mechanism of the formation of the radical in 5-chlorodeoxyuridine is discussed briefly.  相似文献   

10.
Quantum electrodynamics in a laser is formulated, in which the electron-laser interaction is exactly considered, while the interaction of an electron and a single photon is considered by perturbation. The formulation is applied to the electron- laser collisions. The effect of coherence between photons in the laser is therefore fully considered in these collisions. The possibility of y-ray laser generation by use of this kind of collision is discussed.  相似文献   

11.

EditorialSpecial issue

Advances in optoelectronics in europe—the RACE and ESPRIT programmes  相似文献   

12.
The axially deformed relativistic mean field theory is applied to study the isotope shift of charge distributions of odd-Z Pr isotope chain. The nuclear structure associated with the shell and the isotope effect is investigated. The mechanism of the kink in the isotope shift at the neutron magic number N = 82 is revealed to be dependent on the neutron energy level structure at the Fermi energy, demonstrating that the spin-orbit coupling interaction and p-n attraction are well described by the relativistic mean field theory.  相似文献   

13.
14.
By means of a formal analogy with the Aharonov-Bohm effect, the Sagnac time delay and the corresponding Sagnac phase shift in the Kerr-Newman and Reissner-Nordstrfm spacetimes are discussed. We find that the effect depends on the properties of the source of the gravitational field. The contributions made by the electric charge of the gravitational source can be employed to weaken it in the Kerr-Newman spacetime, even if a phase shift and a time delay still appear. This is due to the properties of the rotating source of the gravitational field.  相似文献   

15.
A systematic method of obtaining relative signs of hyperfine coupling constants is described. It applies to systems consisting of (a) a set of one or more nuclei coupled fairly strongly to the electron spin, and possessing a two-fold (or higher) axis of symmetry, together with (b) a set of weakly coupled nuclei defining superhyperfine transitions. ENDOR measurements for several E.P.R. hyperfine transitions, with the field oriented along the symmetry axis, give relative signs of hyperfine components for this direction. Signs for the other directions can then be obtained through ENDOR measurements on a single hyperfine transition at various field orientations. Additional double ENDOR measurements may be necessary for very weakly coupled nuclei. This method can complement double ENDOR studies in favourable cases. It is illustrated by the determination of signs of coupling constants of protons and of 75As in the AsO4 4- radical in KH2AsO4.  相似文献   

16.
We study the finite size effects on Bose–Einstein condensation (BEC) of an ideal non-relativistic Bose gas in the three-sphere (spatial section of the Einstein universe) and in a partially finite box which is infinite in two of the spatial directions (infinite slab). Using the framework of grand-canonical statistics, we consider the number of particles, the condensate fraction and the specific heat. After obtaining asymptotic expansions for large system size, which are valid throughout the BEC regime, we describe analytically how the thermodynamic limit behaviour is approached. In particular, in the critical region of the BEC transition, we express the chemical potential and the specific heat as simple explicit functions of the temperature, highlighting the effects of finite size. These effects are seen to be different for the two different geometries. We also consider the Bose gas in a one-dimensional box, a system which does not possess BEC in the sense of a phase transition even in the infinite volume limit.  相似文献   

17.
We analyze the behavior of shock waves in nonlinear theories of electrodynamics. For this, by use of generalized Hadamard step functions of increasing order, the electromagnetic potential is developed in a series expansion near the shock wave front. This brings about a corresponding expansion of the respective electromagnetic field equations which allows for deriving relations that determine the jump coefficients in the expansion series of the potential. We compute the components of a suitable gauge-normalized version of the jump coefficients given for a prescribed tetrad compatible with the shock front foliation. The solution of the first-order jump relations shows that, in contrast to linear Maxwell’s electrodynamics, in general the propagation of shock waves in nonlinear theories is governed by optical metrics and polarization conditions describing the propagation of two differently polarized waves (leading to a possible appearance of birefringence). In detail, shock waves are analyzed in the Born and Born–Infeld theories verifying that the Born–Infeld model exhibits no birefringence and the Born model does. The obtained results are compared to those ones found in literature. New results for the polarization of the two different waves are derived for Born-type electrodynamics.  相似文献   

18.
In this paper we study a continuum version of the Potts model, where particles are points in ℝ d , d≥2, with a spin which may take S≥3 possible values. Particles with different spins repel each other via a Kac pair potential of range γ −1, γ>0. In mean field, for any inverse temperature β there is a value of the chemical potential λ β at which S+1 distinct phases coexist. We introduce a restricted ensemble for each mean field pure phase which is defined so that the empirical particles densities are close to the mean field values. Then, in the spirit of the Dobrushin-Shlosman theory (Dobrushin and Shlosman in J. Stat. Phys. 46(5–6):983–1014, 1987), we prove that while the Dobrushin high-temperatures uniqueness condition does not hold, yet a finite size condition is verified for γ small enough which implies uniqueness and exponential decay of correlations. In a second paper (De Masi et al. in Coexistence of ordered and disordered phases in Potts models in the continuum, 2008), we will use such a result to implement the Pirogov-Sinai scheme proving coexistence of S+1 extremal DLR measures.  相似文献   

19.
《Physics letters. [Part B]》1987,195(4):569-577
We develop a partial expansion of the effective action from fermion integration relevant for spatially small configurations of the meson fields in the chiral σ-model. It is shown that this leads (in this semiclassical approximation) to a vacuum instability. For weak Yukawa coupling, when the semiclassical calculation is valid, this would indicate an instability of the Weinberg-Salam model, implying that the latter is only an effective theory. We give an estimate of the approximate length scale at which this occurs.  相似文献   

20.
We study the possibility of the small-polaron creation in α-helix proteins, accounting for the self-trapping of the intramolecular vibration energy quanta. The small-polaron concept of energy transfer in polypeptides has been revisited on the basis of these results. It was found that traditional small-polaron theories cannot be directly applied to the vibrational quanta transfer in these substances. In particular, true eigenstates of system should correspond to a partial dressed polarons rather than to the fully dressed small polaron states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号