共查询到20条相似文献,搜索用时 0 毫秒
1.
Research on Chemical Intermediates - Fe3O4 magnetic nanoparticles coated with a TiO2 film (Fe3O4@TiO2 nanoparticles) have been synthesized by use of a modified Stöber method and used for... 相似文献
2.
We have investigated the adsorption of herring sperm DNA on Fe3O4 magnetic nanoparticles (NPs) before and after modification with the ionic liquid 1-hexyl-3-methylimidazolium bromide. Experiments were performed in a batch mode, and the effects of DNA concentration, pH of the sample solution, ionic strength, temperature, and contact time between reagents were optimized. An evaluation of the adsorption isotherm revealed that the Langmuir model better fits the equilibrium data than the Freundlich model. The maximum adsorption capacities of the unmodified and modified NPs, respectively, were found to be 11.8 and 19.8 mg DNA per gram of adsorbent. The adsorption of DNA onto the modified NPs was endothermic, while it was exothermic in the case of the unmodified NPs. The DNA can be desorbed from the modified surfaces of the NPs by using EDTA as the eluent. The NPs were able to adsorb about 90?±?1.5 % of DNA after being recycled for three times. The method is simple, fast, robust, and does not require organic solvents or sophisticated equipment. Figure
Fe3O4 nanoparticles as well as 1-hexyl-3-methylimidazolium bromidecoated Fe3O4 nanoparticles were prepared and used for adsorption of DNA. The mean size and the surface morphology of both nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. The correlation coefficient of the Langmuir model suggests a better fit for the experimental equilibrium adsorption data. 相似文献
3.
Uheida A Salazar-Alvarez G Björkman E Yu Z Muhammed M 《Journal of colloid and interface science》2006,298(2):501-507
The adsorption of Co2+ ions from nitrate solutions using iron oxide nanoparticles of magnetite (Fe3O4) and maghemite (gamma-Fe2O3) has been studied. The adsorption of Co2+ ions on the surface of the particles was investigated under different conditions of oxide content, contact time, solution pH, and initial Co2+ ion concentration. It has been found that the equilibrium can be attained in less than 5 min. The maximum loading capacity of Fe3O4 and gamma-Fe2O3 nanoparticles is 5.8 x 10(-5) and 3.7 x 10(-5) mol m(-2), respectively, which are much higher than the previously studied, iron oxides and conventional ion exchange resins. Co2+ ions were also recovered by dilute nitric acid from the loaded gamma-Fe2O3 and Fe3O4 with an efficiency of 86 and 30%, respectively. That has been explained by the different mechanisms by including both the surface and structural loadings of Co2+ ions. The surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles has been found to have the same mechanism of ion exchange reaction between Co2+ in the solution and proton bonded on the particle surface. The conditional equilibrium constants of surface adsorption of Co2+ on Fe3O4 and gamma-Fe2O3 nanoparticles have been determined to be log K=-3.3+/-0.3 and -3.1+/-0.2, respectively. The structural loading of Co2+ ions into Fe3O4 lattice has been found to be the ion exchange reaction between Co2+ and Fe2+ while that into gamma-Fe2O3 lattice to fill its vacancy. The effect of temperature on the adsorption of Co2+ was also investigated, and the value of enthalpy change was determined to be 19 kJ mol(-1). 相似文献
4.
5.
6.
Uranium(VI) was removed from aqueous solutions using carbon coated Fe3O4 nanoparticles (Fe3O4@C). Batch experiments were conducted to study the effects of initial pH, shaking time and temperature on uranium sorption efficiency. It was found that the maximum adsorption capacity of the Fe3O4@C toward uranium(VI) was ∼120.20 mg g−1 when the initial uranium(VI) concentration was 100 mg L−1, displaying a high efficiency for the removal of uranium(VI) ions. Kinetics of the uranium(VI) removal is found to follow pseudo-second-order rate equation. In addition, the uranium(VI)-loaded Fe3O4@C nanoparticles can be recovered easily from aqueous solution by magnetic separation and regenerated by acid treatment. Present study suggested that magnetic Fe3O4@C composite particles can be used as an effective and recyclable adsorbent for the removal of uranium(VI) from aqueous solutions. 相似文献
7.
Unmodified Fe(3)O(4) nanoparticles do not stabilize Pickering emulsions of a polar oil like butyl butyrate. In order to obtain stable emulsions, the Fe(3)O(4) nanoparticles were modified by either carboxylic acid (RCOOH) or silane coupling agents (RSi(OC(2)H(5))(3)) to increase their hydrophobicity. The influence of such surface modification on the stability of the resultant Pickering emulsions was investigated in detail for both a non-polar oil (dodecane) and butyl butyrate in mixtures with water. The stability of dodecane-in-water emulsions in the presence of carboxylic acid-coated particles decreases as the length of the alkyl group (R) and the coating extent increase. However, such particles are incapable of stabilizing butyl butyrate-water emulsions even when the carboxylic acid length is decreased to two. However, the silane-coated Fe(3)O(4) nanoparticles can stabilize butyl butyrate-in-water emulsions, and they also increase the stability of dodecane-in-water emulsions. Thermal gravimetric analysis indicates that the molar quantity of silane reagent is much higher than that of carboxylic acid on nanoparticle surfaces after modification, raising their hydrophobicity and enabling enhanced stability of the resultant polar oil-water emulsions. 相似文献
8.
Magnetic Pickering emulsions stabilized by Fe3O4 nanoparticles 总被引:1,自引:0,他引:1
Zhou J Qiao X Binks BP Sun K Bai M Li Y Liu Y 《Langmuir : the ACS journal of surfaces and colloids》2011,27(7):3308-3316
Superparamagnetic Fe(3)O(4) nanoparticles prepared by a classical coprecipitation method were used as the stabilizer to prepare magnetic Pickering emulsions, and the effects of particle concentration, oil/water volume ratio, and oil polarity on the type, stability, composition, and morphology of these functional emulsions were investigated. The three-phase contact angle (θ(ow)) of the Fe(3)O(4) nanoparticles at the oil-water interface was evaluated using the Washburn method, and the results showed that for nonpolar and weakly polar oils of dodecane and silicone, θ(ow) is close to 90°, whereas for strongly polar oils of butyl butyrate and 1-decanol, θ(ow) is far below 90°. Inherently hydrophilic Fe(3)O(4) nanoparticles can be used to prepare stable dodecane-water and silicone-water emulsions, but they cannot stabilize butyl butyrate-water and decanol-water mixtures with macroscopic phase separation occurring, which is in good agreement with the contact angle data. Emulsions are of the oil-in-water type for both dodecane and silicone oil, and the average droplet size increases with an increase in the oil volume fraction. For stable emulsions, not all of the particles are adsorbed to drop interfaces; the fraction adsorbed decreases with an increase in the initial oil volume fraction. Changes in the particle concentration have no obvious influence on the stability of these emulsions, even though the droplet size decreases with concentration. 相似文献
9.
In this work, biosynthesized Fe3O4@Ni nanoparticles using Euphorbia maculata aqueous have been used as effective catalysts in the synthesis of 2,3-disubstituted benzo[b]furan derivatives using three component coupling of aldehydes, secondary amines and alkynes (A3 coupling reaction). Using novel nanoscale materials, the current green, practical and economical method leads to short reaction times and high yields. The biosynthesized catalyst was also successfully employed in the Sonogashira cross-coupling reactions of various aryl halides with phenylacetylene. The best performance was observed using just 20 mg of the catalyst and ethanol as a green solvent. The developed protocol provides easy workup, short reaction times and good to excellent product yields. Furthermore, since the composite is highly stable, an external permanent magnet can be easily used for separating the catalyst. Thus, the catalyst can be recycled several times without considerable loss of catalytic activity. 相似文献
10.
Tai Y Wang L Gao J Amer WA Ding W Yu H 《Journal of colloid and interface science》2011,360(2):731-738
A simple strategy to fabricate magnetic porous microspheres of Fe(3)O(4)@poly(methylmethacrylate-co-divinylbenzene) was demonstrated. The magnetic microspheres, consisting of polymer-coated iron oxide nanoparticles, were synthesized by the modified suspension polymerization of methacrylate and divinylbenzene in the presence of a magnetic fluid. The morphology and the properties of the magnetic porous microspheres were examined by scanning electron microscopy, transmission electron microscopy, superconducting quantum interference device, Fourier transform infrared spectroscopy, thermogravimetry, and X-ray powder diffraction. The pore size distribution and the specific surface area of the microspheres were measured by nitrogen sorption and mercury porosimetry technique. As predicted from the previous knowledge, the magnetic porous microspheres possessed a high specific surface area using n-hexane as a porogen. It was further found that the amounts of divinylbenzene and methacrylate, the ratio of porogens, and the dosage of ferrofluids affect the specific surface area of the microspheres. Furthermore, the microspheres were applied to remove phenol from aqueous solutions. The results showed that the microspheres had a high adsorption capacity for phenol and a high separation efficiency due to their porous structure, polar groups, and superparamagnetic characteristic. 相似文献
11.
Wang L Luo J Fan Q Suzuki M Suzuki IS Engelhard MH Lin Y Kim N Wang JQ Zhong CJ 《The journal of physical chemistry. B》2005,109(46):21593-21601
The ability to synthesize and assemble monodispersed core-shell nanoparticles is important for exploring the unique properties of nanoscale core, shell, or their combinations in technological applications. This paper describes findings of an investigation of the synthesis and assembly of core (Fe(3)O(4))-shell (Au) nanoparticles with high monodispersity. Fe(3)O(4) nanoparticles of selected sizes were used as seeding materials for the reduction of gold precursors to produce gold-coated Fe(3)O(4) nanoparticles (Fe(3)O(4)@Au). Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, core-shell composition, surface reactivity, and magnetic properties have confirmed the formation of the core-shell nanostructure. The interfacial reactivity of a combination of ligand-exchanging and interparticle cross-linking was exploited for molecularly mediated thin film assembly of the core-shell nanoparticles. The SQUID data reveal a decrease in magnetization and blocking temperature and an increase in coercivity for Fe(3)O(4)@Au, reflecting the decreased coupling of the magnetic moments as a result of the increased interparticle spacing by both gold and capping shells. Implications of the findings to the design of interfacial reactivities via core-shell nanocomposites for magnetic, catalytic, and biological applications are also briefly discussed. 相似文献
12.
Narjes Setoodeh Feridun Esmaeilzadeh 《Journal of Dispersion Science and Technology》2018,39(4):578-588
The objective of the present study was to investigate the potential use of applying polythiophene coating on magnetic Fe3O4 nanoparticles for the enhancement of asphaltene adsorption. Two stages of experimental were conducted. In the first stage, the ability of coated nanoparticles for asphaltene adsorption in synthetic asphaltene-toluene solution was evaluated. The effects of parameters such as nanoparticles concentration, initial concentration of asphaltene, and temperature were studied. In the second stage, the performance of the coated nanoparticles for the adsorption of asphaltene from crude oil was investigated under atmospheric pressure and a pressure-volume-temperature (PVT) apparatus was utilized for simulated reservoir conditions. Fe3O4 and Fe3O4-PT MNPs were synthesized using an effective co-precipitation method. The results of the first-stage tests indicated that the maximum adsorption capacity values for Fe3O4 and Fe3O4-PT MNPs were 0.79 and 1.09?mg?m?2, respectively. The optimum value of nanoparticles concentration was approximately determined as 10?g?L?1. According to the adsorption isotherms and kinetics, the Langmuir and pseudo-second-order Lagergren models were consistent with the experimental data, respectively. The average adsorption efficiencies for Fe3O4-PT and Fe3O4 MNPs were 78.98 and 65.94%, respectively. The results of the performed experiments on crude oil showed that Fe3O4-PT MNPs could adsorb asphaltenes from crude oil in a similar trend as synthetic asphaltene-toluene solution. 相似文献
13.
The specific adsorption of radiolabeled sulfate and phosphate ions from perchlorate supporting electrolyte onto nano-AlOOH and nano-Fe(2)O(3) powder has been investigated. The pH dependence of the adsorption of anions onto nanopowders was compared with that of the same ions onto gamma-Al(2)O(3) and hematite. It was demonstrated that the character of the pH dependence of the adsorption is very similar in the comparable cases. It was found, however, that in contrast to the behavior of gamma-Al(2)O(3), nano-AlOOH dissolves at a significant rate at low pH values (pH<2). Thus the study of the pH dependence of the anion adsorption encounters difficulties at these pH values. Disregarding this fact, it can be concluded that no special effects can be observed in the anion adsorption onto the nano-oxides studied. 相似文献
14.
Synthesis of Fe3O4, Fe2O3, Ag/Fe3O4 and Ag/Fe2O3 nanoparticles and their electrocatalytic properties
Two important iron oxides:Fe3O4 and Fe2O3,as well as Fe3O4 and Fe2O3 nanoparticles mingling with Ag were successfully synthesized via a hydrothermal procedure.The samples were confirmed and characterized by X-ray diffraction(XRD),and X-ray photoelectron spectroscopy(XPS).The morphology of the samples was observed by transmission electron microscopy(TEM).The results indicated Fe3O4,Fe2O3,Ag/Fe3O4 and Ag/Fe2O3 samples all were nanoparticles with smaller sizes.The samples were modified on a glassy carbon electrode and their elctrocatalytic properties for p-nitrophenol in a basic solution were investigated.The results revealed all the samples showed enhanced catalytic performances by comparison with a bare glassy carbon electrode.Furthermore,p-nitrophenol could be reduced at a lower peak potential or a higher peak current on a glassy carbon electrode modified with Ag/Fe3O4 or Ag/Fe2O3 composite nanoparticles. 相似文献
15.
The most frequent method of removing malignant growth-causing tones from current effluents before releasing them into water sources such as rivers, lakes, and groundwater has become standard. Traditional waste-water treatment frameworks have trouble getting rid of these contaminants. This is a unique flavonoid that uses Fe3O4 nanorods as photocatalytic agents to corrupt material tone in the watery stage utilizing observable light enlightenment. Green technique was used to amalgamate [email protected]3O4 nanorod like gems. Disappearance of the bright (UV) maintenance top at 565 nm confirmed the elimination of Methyl orange tone. After 110 min, the sensational shading disposal of Fe3O4 nanorod was observed to be 100%. This is due to photochemical redox process and the use of Fe3O4 nanorods with a high energy gap of flavonoids. The findings show that Fe3O4 rod-like gems manufactured using green technology are extremely valuable in the photocatalytic annihilation of hazardous contaminants. 相似文献
16.
《Arabian Journal of Chemistry》2020,13(11):8080-8091
Dye wastewater from industries is posing tremendous health hazards. The lethal dyes can be eliminated using nanomaterials and scientific approach like adsorption which is facile, cheap, safe as well as ecofriendly. Fe3O4-CuO-AC composite was prepared by a hydrothermal method and used for the removal of dyes in wastewater. The composite material was characterized by various techniques such as XRD, SEM, EDS, TEM and FT-IR. The Fe3O4-CuO-AC composite was used to treat five types of dyes in water. Fe3O4-CuO-AC composite showed the highest adsorption capability for bromophenol blue (BPB) dye. The effects of initial concentration, pH, the amount of adsorbent and temperature were also studied. The optimum conditions were found to be 20 ppm dye concentration, pH 9, an adsorbent dose of 0.06 gL─1 at 65 °C. A removal efficiency of 97% was obtained for BPB dye during 120 min of adsorption. Kinetic studies indicated that a pseudo-second order is the most suitable model for the adsorption process. The Fe3O4-CuO-AC composite showed better adsorption capacity as compare to Fe3O4-AC except for the Methyl green dye. The maximum adsorption capacity was found to be 88.60 mg/g for BPB. Additionally, the thermodynamic parameters (ΔS°, ΔH° and ΔG°) showed that the process was spontaneous and exothermic. All the above results revealed that the Fe3O4-CuO-AC compositecan be an effective adsorbent for removing dyes from wastewater. 相似文献
17.
Peroxidase-like catalytic properties of Fe3O4 nanoparficles (NPs) with three different sizes, synthesized by chemical coprecipitation and sol-gel methods, were investigated by UV-vis spectrum analysis. By comparing Fe3O4 NPs with average diameters of 11, 20, and 150 nm, we found that the catalytic activity increases with the reduced nanoparticle size. The electrochemical method to characterize the catalytic activity of Fe3O4 NPs using the response currents of the reaction product and substrate was also developed. 相似文献
18.
G. W. Peng D. X. Ding F. Z. Xiao X. L. Wang N. Hun Y. D. Wang Y. M. Dai Z. Cao 《Journal of Radioanalytical and Nuclear Chemistry》2014,301(3):781-788
The magnetic Fe3O4 nanoparticle was functionalized by covalently grafting amine group with (3-aminopropyl) trimethoxy silane, and the Fe3O4–NH2 nanoparticle and the Fe3O4 nanoparticle were characterized by Fourier transform infrared, and X-ray diffraction. And the results indicated the amine-group was immobilized successfully on the surface of Fe3O4. The adsorption behavior of uranium from aqueous solution by the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle was investigated using batch experiments. The pH of initial aqueous solution at 5.0 and 6.0 were in favour of adsorption of uranium, and the adsorption percentage of uranium by the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle were 81.2 and 95.6 %, respectively. In addition, the adsorption of uranium ions could be well-described by the Langmuir, Freundlich isotherms and pseudo-second kinetic models. The monolayer adsorption maximum capacity of the Fe3O4 nanoparticle and the Fe3O4–NH2 nanoparticle were 85.35 and 268.49 mg/g at 298.15 K, respectively, which indicate the adsorption capacity the Fe3O4 nanoparticle was improved by amine functionalization. 相似文献
19.
Synthesis of orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles for cell separation
Orientedly bioconjugated core/shell Fe3O4@Au magnetic nanoparticles were synthesized for cell separation. The Fe3O4@Au magnetic nanoparticles were synthesized by reducing HAuCl4 on the surfaces of Fe3O4 nanoparticles, which were further characterized in detail by TEM, XRD and UV-vis spectra. Anti-CD3 monoclonal antibody was orientedly bioconjugated to the surface of Fe3O4@Au nanoparticles through affinity binding between the Fc portion of the antibody and protein A that covalently immobilized on the nanoparticles. The oriented immobilization method was performed to compare its efficiency for cell separation with the non-oriented one, in which the antibody was directly immobilized onto the carboxylated nanoparticle surface. Results showed that the orientedly bioconjugated Fe3O4@Au MNPs successfully pulled down CD3+ T cells from the whole splenocytes with high efficiency of up to 98.4%, showing a more effective cell-capture nanostructure than that obtained by non-oriented strategy. This developed strategy for the synthesis and oriented bioconjugation of Fe3O4@Au MNPs provides an efficient tool for cell separation, and may be further applied to various fields of bioanalytical chemistry for diagnosis, affinity extraction and biosensor. 相似文献
20.
The incorporation of metal oxide nanoparticles into microgels forming hybrid systems gives additional functionalities to the system and widens the field of potential application in biomedicine, biotechnology, and other fields. In particular, there have been very few investigations regarding UCST-like hybrid microgels. In connection with this, we report the preparation of UCST-like hybrid microgels of magnetite nanoparticles (Fe(3)O(4)) encapsulated in poly(acrylamide-acrylic acid) microgel matrix via an inverse emulsion polymerization method. The key factor in the preparation of hybrid microgels is the need to divide in two the aqueous phase of the emulsion and feed them separately in order to avoid the aggregation of magnetic nanoparticles prior to polymerization reaction. The morphology, size, and spherical shape of hybrid microgels are determined by scanning electron microscopy. The encapsulation of magnetite nanoparticles within the polymer matrix is confirmed by transmission electron microscopy. Dynamic light scattering is employed to study both the swelling UCST-like behavior and the surface charge of the hybrid microgels. Swelling measurements confirm that the incorporation of magnetite does not affect the thermosensitivity of the system. In order to highlight the rheological behavior that can affect the final potential applications of these hybrid systems, a deep study of the viscoelastic properties is carried out by means of an oscillatory rheometer. The dependence of G' and G' of the microgel dispersions with the frequency suggests a gel-like behavior and hence the occurrence of structural organization. In order to understand this structure formation and the influence of the magnetite in the interaction between hybrid microgels, scaling theory was applied. In terms of rheology, the addition of magnetite leads to a change in the interaction between hybrid microgels giving rise to an increase in the elasticity of the system. 相似文献