首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We explore the possibility that QCD may undergo a phase transition as a function of the strange quark mass. This would hint towards models with ”spontaneous color symmetry breaking” in the vacuum. For two light quark flavors we classify possible colored quark-antiquark, diquark and gluon condensates that are compatible with a spectrum of integer charged states and conserved isospin and baryon number. The ”quark mass phase transition” would be linked to an unusual realization of baryon number in QCD2 and could be tested in lattice simulations. We emphasize, however, that at the present stage the Higgs picture of the vacuum cannot predict a quark mass phase transition - a smooth crossover remains as a realistic alternative. Implications of the Higgs picture for the high-density phase transition in QCD2 suggest that this transition is characterized by the spontaneous breaking of isospin for nuclear and quark matter. Received: 12 March 2001 / Revised version: 2 April 2003 / Published online: 2 June 2003 RID="a" ID="a" e-mail: C.Wetterich@thphys.uni-heidelberg.de  相似文献   

2.
By means of perturbative renormalization approach we study the effect of relevant umklapp process on dimensional crossover caused by interladder one particle hopping in weakly coupled two-leg Hubbard ladders with a half filled-band. We found that a crossover takes place at a finite value which increases as the amplitude of umklapp process increases. For the system undergoes a phase transition to the spin density wave phase (SDW) via the two particle hopping process, while for the system undergoes a crossover to the two dimensional Fermi liquid phase via one particle hopping process. Received 25 December 1998  相似文献   

3.
We study the three-dimensional (3D) compact U(1) lattice gauge theory coupled with N-flavor Higgs fields by means of the Monte Carlo simulations. This model is relevant to multi-component superconductors, antiferromagnetic spin systems in easy plane, inflational cosmology, etc. It is known that there is no phase transition in the N = 1 model. For N = 2, we found that the system has a second-order phase transition line in the c2 (gauge coupling)-c1 (Higgs coupling) plane, which separates the confinement phase and the Higgs phase. Numerical results suggest that the phase transition belongs to the universality class of the 3D XY model as the previous works by Babaev et al. and Smiseth et al. suggested. For N = 3, we found that there exists a critical line similar to that in the N = 2 model, but the critical line is separated into two parts; one for c2<c2tc=2.4±0.1 with first-order transitions, and the other for c2tc<c2 with second-order transitions, indicating the existence of a tricritical point. We verified that similar phase diagram appears for the N = 4 and N = 5 systems. We also studied the case of anistropic Higgs coupling in the N = 3 model and found that there appear two second-order phase transitions or a single second-order transition and a crossover depending on the values of the anisotropic Higgs couplings. This result indicates that an “enhancement” of phase transition occurs when multiple phase transitions coincide at a certain point in the parameter space.  相似文献   

4.
We study phase transitions in the lattice version of the abelian Higgs model, a model which can exhibit both spontaneous symmetry breaking and confinement. When the Higgs charge is the basic U(1) unit, we find that the Higgs and confinement regions are not separated by a phase transition and form a single homogenous phase which we call the total screening phase. The model does not undergo a symmetry restoring phase transition at finite temperature.If the Higgs charge is some multiple of the basic unit the model follows the conventional wisdom: there are 3 phases (normal, Higgs and confinement) at zero temperature, two of which disappear above some critical point. We apply the lessons learned from the lattice Higgs model to understand the behavior of the weak interactions at high temperature.In a long appendix we give an intuitive physical picture for the Polyakov-Susskind quark liberating phase transition and show that it is related to the Hagedorn spectrum of a confining model. We end with a collection of effective field theory approximations to various lattice theories.  相似文献   

5.
AnSU(2) gauge theory coupled to a Higgs field in the fundamental representation is studied at finite temperature by Monte Carlo method. Calculations are done on 84, 83×4 and 83×2 lattices with a small Higgs self-coupling constant. In the parameter region we studied both the location and the order of the Higgs transition are found to be insensitive to the system's temperature. As for the deconfining transition at finite temperature, our data suggest that it disappears within the symmetric region as the Higgs bare mass decreases. Results on the Higgs energy density and the gauge energy density are also presented.  相似文献   

6.
We review the production of scalar Higgs-like particles in high-energy electron–electron collisions, via the fusion of electroweak gauge bosons. The emphasis is on how to distinguish a CP-even from a CP-odd Higgs particle. Among the more significant differences, we find that in the CP-odd case, the Higgs spectrum is much harder, and the dependence of the total cross section on the product of the polarizations of the two beams much stronger, than in the CP-even case. We also briefly discuss parity violation, and the production of charged Higgs bosons. Received: 1 December 1998 / Revised version: 15 February 1999 / Published online: 18 June 1999  相似文献   

7.
In this paper we discuss the black hole–string transition of the small Schwarzschild black hole of AdS 5×S5 using the AdS/CFT correspondence at finite temperature. The finite temperature gauge theory effective action, at weak and strong coupling, can be expressed entirely in terms of constant Polyakov lines which are SU(N) matrices. In showing this we have taken into account that there are no Nambu–Goldstone modes associated with the fact that the 10-dimensional black hole solution sits at a point in S5. We show that the phase of the gauge theory in which the eigenvalue spectrum has a gap corresponds to supergravity saddle points in the bulk theory. We identify the third order N=∞ phase transition with the black hole–string transition. This singularity can be resolved using a double scaling limit in the transition region where the large N expansion is organized in terms of powers of N-2/3. The N=∞ transition now becomes a smooth crossover in terms of a renormalized string coupling constant, reflecting the physics of large but finite N. Multiply wound Polyakov lines condense in the crossover region. We also discuss the implications of our results for the resolution of the singularity of the lorenztian section of the small Schwarzschild black hole.  相似文献   

8.
9.
《Nuclear Physics B》1995,441(3):629-657
We investigate an effective model for the finite-temperature symmetry-restoration phase transition of the electroweak theory. It is obtained by dimensional reduction of the (3 + 1)-dimensional full theory and by subsequent integration over all static gauge degrees of freedom. The resulting theory corresponds to a 3-dimensional O(4) ferromagnet containing cubic and quartic terms of the field in its potential function. Possible nonperturbative effects of a magnetic screening mass are parametrically included in the potential. We analyse the theory using mean-field and numerical Monte Carlo (MC) simulation methods. At the value of the physical Higgs mass, mH = 37 GeV, considered in the present investigation, we find a discontinuous symmetry-restoring phase transition. We determine the critical temperature, order parameter jump, interface tension and latent heat characteristics of the transition. The Monte Carlo results indicate a somewhat weaker first-order phase transition as compared to the mean-field treatment, demonstrating that non-perturbative fluctuations of the Higgs field are relevant. This effect is especially important for the interface tension. Any observation of hard first-order transition could result only from non-perturbative effects related to the gauge degrees of freedom.  相似文献   

10.
The potential of a linear e + e- collider operated at a centre-of-mass energy of 350 GeV is studied for the measurement of the Higgs boson mass. An integrated luminosity of 500 fb-1 is assumed. For Higgs boson masses of 120, 150 and 180 GeV the uncertainty on the Higgs boson mass measurement is estimated to be 40, 65 and 70 MeV, respectively. The effects of beam related systematics, namely a bias in the beam energy measurement, the beam energy spread and the luminosity spectrum due to beamstrahlung, on the precision of the Higgs boson mass measurement are investigated. In order to keep the systematic uncertainty on the Higgs boson mass well below the level of the statistical error, the beam energy measurement must be controlled with a relative precision better than 10-4. Received: 30 May 2005, Revised: 6 July 2005, Published online: 6 October 2005  相似文献   

11.
张振俊  于淼  巩龙龚  童培庆 《物理学报》2011,60(9):97104-097104
本文通过二次矩M2(t)和概率分布Wn(t)数值地研究了两种扩展Harper模型的波包动力学,得到了这两种模型中各个相、各条临界线以及三相点的波包扩散情况.对于第一种扩展Harper模型,发现两个金属相中波包是弹道扩散的,在绝缘体相中波包不扩散,而在三相点以及各条临界线上波包是反常扩散的.同时,发现金属相—金属相转变的临界线上的波包动力学行为与金属相—绝缘体相转变的临界线上的相同,但三相点的动力学行为与各临 关键词: 金属绝缘体转变 扩展Harper模型 波包动力学  相似文献   

12.
We study the quark deconfinement phase transition in hot β-stable hadronic matter. Assuming a first order phase transition, we calculate the enthalpy per baryon of the hadron–quark phase transition. We calculate and compare the nucleation rate and the nucleation time due to thermal and quantum nucleation mechanisms. We compute the crossover temperature above which thermal nucleation dominates the finite temperature quantum nucleation mechanism. We next discuss the consequences for the physics of proto-neutron stars. We introduce the concept of limiting conversion temperature and critical mass Mcr for proto-hadronic stars, and we show that proto-hadronic stars with a mass M<Mcr could survive the early stages of their evolution without decaying to a quark star.  相似文献   

13.
We study the upper limits on the mass of the lightest and second lightest CP even Higgs bosons in the (M + 1)SSM, the MSSM extended by a gauge singlet. The dominant two loop contributions to the effective potential are included, which reduce the Higgs masses by GeV. Since the coupling R of the lightest Higgs scalar to gauge bosons can be small, we study in detail the relations between the masses and couplings of both lightest scalars. We present upper bounds on the mass of a ”strongly” coupled Higgs (R < 1/2) as a function of lower experimental limits on the mass of a ”weakly” coupled Higgs (R < 1/2). With the help of these results, the whole parameter space of the model can be covered by Higgs boson searches. Received: 7 September 1999 / Published online: 12 July 2002  相似文献   

14.
We explore non-standard Higgs phenomenology in the gaugephobic Higgs model in which the Higgs can be lighter than the usually quoted current experimental bound. The Higgs propagates in the bulk of a 5D space–time and Electroweak Symmetry Breaking occurs by a combination of boundary conditions in the extra dimension and an elementary Higgs. The Higgs can thus have a significantly suppressed coupling to the other Standard Model fields. A large enough suppression can be found to escape all limits and allow for a Higgs of any mass, which would be associated with the discovery of W and Z Kaluza–Klein resonances at the LHC. The Higgs can be precisely discovered at B-factories while the LHC would be insensitive to it due to high backgrounds. In this Letter we study the Higgs discovery mode in (3S), (2S), and (1S) decays, and the model parameter space that will be probed by BaBar, Belle, and CLEO data. In the absence of an early discovery of a heavy Higgs at the LHC, A Super-B factory would be an excellent option to further probe this region.  相似文献   

15.
The probabilities of the associated production of a Higgs boson with a Z boson by a charged lepton in the field of a plane electromagnetic wave of arbitrary intensity and in a constant crossed field are obtained. The behavior of the cross section of the process as a function of the particle energies and the external field intensity is investigated for various values of the Higgs boson mass. It is shown that there is a logarithmic increase in the photoproduction cross section at superhigh energies up to a value significantly exceeding the cross section of the reaction e ++e Z+H, which is presently regarded as the most probable channel for the production of Higgs bosons. Zh. éksp. Teor. Fiz. 113, 1979–1990 (June 1998)  相似文献   

16.
We have investigated the simple shear flow behavior of wormlike micelles using small-angle neutron scattering and mechanical measurements. Ternary surfactant solutions made of cetylpyridinium chloride, hexanol and brine (0.2 M NaCl) and hereafter abbreviated as CPCl-Hex were studied in the concentrated regime, . In a preliminary report (Berret et al. [#!ref16!#]), the discontinuity of slope observed in the shear stress versus shear rate curve was interpreted in terms of first-order phase transition between an isotropic state and a shear-induced nematic state ( transition). At the transition rate, , the solution exhibits a macroscopic phase separation into viscous and fluid layers (inhomogeneous shear flow). Above a second characteristic shear rate, the flow becomes homogeneous again, the sheared solution being nematic only. The neutron patterns obtained in the two-state inhomogeneous region have been re-examined. Based on a consistent analysis of both orientational and translational degrees of freedom related to the wormlike micelles, we emphasize new features for the transition. In the present paper, the shear rate variations of the relative proportions of each phase in the two-state region, as well as the viscosity ratio between isotropic and nematic phases are derived. We demonstrate in addition that slightly above the transition rate, the shear induced nematic phase is already strongly oriented, with an order parameter P 2 = 0.65. The orientational state is that of a nematic flow-oriented monodomain. Finally, from the locations of the neutron scattering maxima for each isotropic and nematic contributions, we evaluate the concentrations for each phase and and derived a dynamical phase diagram of CPCl-Hex, in terms of the stress versus and . According to the classification by Schmitt et al. [#!ref22!#], the transition observed in CPCl-Hex micellar solutions could result from a positive flow-concentration coupling, in agreement with the observed monotonically increasing shear stress in the two-phase region. Received: 16 February 1998 / Revised: 18 February 1998 / Accepted: 24 May 1998  相似文献   

17.
We consider the two-Higgs-doublet model with explicit CP-violation, where the effective Higgs potential is not CP-invariant at the tree level. The three neutral Higgs bosons of the model are the mixtures of CP-even and CP-odd bosons which exist in the CP-conserving limit of the theory. The mass spectrum and tree-level couplings of the neutral Higgs bosons to gauge bosons and fermions are significantly dependent on the parameters of the Higgs boson mixing matrix. We calculate the Higgs-gauge boson, Higgs-fermion, triple and quartic Higgs self-interactions in the MSSM with explicit CP-violation in the Higgs sector and CP-violating Yukawa interactions of the third generation scalar quarks. In some regions of the MSSM parameter space substantial changes of the self-interaction vertices take place, leading to significant suppression or enhancement of the multiple Higgs boson production cross sections. Received: 13 June 2002 / Revised version: 20 November 2002 / Published online: 14 March 2003  相似文献   

18.
The MSSM with a light right-handed stop and supersymmetric models with a singlet whose vev is comparable to that of the Higgs allow for a strongly first-order electroweak phase transition even for a mass of the lightest Higgs around 100 GeV. After a short review of the standard model situation we discuss these supersymmetric models. We also compare perturbative calculations based on the dimensionally reduced 3-dimensional action with lattice results and present an analytic procedure based on an analogue of the stochastic vacuum model of QCD to estimate the nonperturbative contributions. Received: 26 September 1998 / Revised version: 2 June 1999 / Published online: 15 July 1999  相似文献   

19.
The Higgs boson mass spectrum and couplings of the neutral Higgs bosons to the fermions are worked out in a CP spontaneously broken two-Higgs doublet model in the large case. The differential branching ratio, forward-backward asymmetry, CP asymmetry and lepton polarization for are computed. It is shown that the effects of neutral Higgs bosons are quite significant when is large. Especially, the CP violating normal polarization can be as large as several percents. Received: 15 October 2001 / Revised version: 5 March 2002 / Published online: 26 July 2002  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号