首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 162 毫秒
1.
季铵盐Gemini表面活性剂胶团水溶液的流变性质   总被引:3,自引:0,他引:3  
用毛细管振荡剪切流动法研究联接基团为聚亚甲基链的季铵盐型Gemini表面活性剂C12-s-C12·2Br(s=2,4,8)的流变性质,并用动态光散射技术测定胶团生长过程中的胶团形状和大小的变化规律,探索联接基团长度对胶团形状、大小以及溶液流变性质的影响.实验结果表明,胶团形状和大小与联接基团长度有关,而溶液的流变性质主要由胶团的大小和形状所决定,球形和棒状(长椭球体)胶团溶液的流变性质以纯粘度为主,而线性胶团溶液则显示粘弹性质.此外,增加电解质浓度和降低温度均使溶液的粘度增大.  相似文献   

2.
动态光散射法研究季铵盐Gemini表面活性剂的胶团化行为   总被引:2,自引:0,他引:2  
徐晓明  吴章锋  张春艳  韩国彬 《化学学报》2004,62(19):1889-1893
用动态光散射技术在10~70℃温度范围内,通过测定胶团的平均流体力学半径随温度、盐浓度和联接基团长度的变化情况,研究联接基团为聚亚甲基链的阳离子季铵盐Gemini表面活性剂胶团在无机盐介质中的长大规律.实验结果表明,增加盐量、降低温度和减小联接基团的长度均使平均流体力学半径变大,Gemini表面活性剂胶团长大时是由球状转变为棒状.从实验测定的平流体力学半径求算了支配球-棒转变的平衡常数及热力学函数值,并用NNLS(non-negatively constrainedleast square)算法对胶团的粒径分布情况进行了分析.此外,对具有短联接基团的Gemini表面活性剂胶团长大所具有的独特性质进行了讨论.  相似文献   

3.
联接基长度对Gemini表面活性剂流变性质的影响   总被引:3,自引:0,他引:3  
用毛细管振荡剪切流动法研究了联接基团为聚亚甲基链的阳离子Gemini表面活性剂的流变性质。实验结果表明,无论是普通单链单头基或Gemini表面活性剂,其流变性质主要由胶团的大小和形状所决定;随着联接基团长度的增加,胶团的轴比率变小,导致流动阻力减小,粘度降低。此外对于球形和棒状胶团溶液,其流变性质主要以粘性为主.弹性可忽略不计。在低剪切速率下,溶液属于牛顿型流体;而在高剪切速率下,则表现出准塑性流体性质。  相似文献   

4.
Gemini表面活性剂是通过联接基团将两个具有亲水亲油性质的两亲结构单元在其亲水头基上或靠近亲水头基处以共价键方式连接而成的一类表面活性剂。这类表面活性剂由于联接基团的引入具有比传统单链表面活性剂更高的表面活性,同时分子结构中更多的可调控因素使其在水溶液中表现出更为丰富的自聚集行为,而且分子不同部位结构的改变对分子内或分子间相互作用产生不同的影响,可实现通过分子结构的设计有效调控其自聚集能力和聚集体结构。本综述将从联接基团、烷基链、亲水头基、反离子和其它功能性基团这五个方面概述近些年Gemini表面活性剂水溶液中聚集行为方面的研究进展,总结人们对Gemini表面活性剂分子间相互作用规律的认识,期望对于进一步发展这类高效的表面活性剂体系提供有益的帮助。  相似文献   

5.
利用分子动力学模拟方法研究了系列离子液体型Gemini咪唑表面活性剂在水溶液中的表面活性和胶束化能力. 模拟结果表明,压力张量法得到的表面张力模拟值偏小,需乘以修正系数矫正;分子动力学模拟得到的临界胶束浓度变化规律与实验相符,可以定性比较不同结构的离子液体型Gemini咪唑分子间的胶束化能力;温度的升高会加剧分子的热运动,不利于离子液体型Gemini咪唑表面活性剂在水溶液中形成胶束;此外,研究还发现联接基不同的离子液体型Gemini咪唑表面活性剂可能遵循不同的胶束化机理.S≤6时,单个分子自组装成胶球后发生聚合形成大胶团.随着咪唑上长烷烃链碳数的增加,[Cn-4-Cnim]胶束化能力提高;而随着联接链长度增加,[C10-S-C10im]胶束化能力降低;当S >6时,分子联接基弯曲并伸入其它分子烷烃链内部以减小头基分离力,从而形成稳定的胶束或胶团.随着联接基团亚甲基数的增加,头基斥力减小,附加疏水相互作用增强,[C10-S-C10im]胶束化能力提高.  相似文献   

6.
Gemini阳离子表面活性剂的合成及其胶束生成   总被引:13,自引:2,他引:13  
传统的单头基单烷烃链表面活性剂由于离子头基间的电荷斥力或水化引起的分离倾向使得它们在界面或分子聚集体中难以紧密排列,造成表面活性偏低 .为克服这一缺陷进行了大量尝试,例如添加无机电解质屏蔽离子头基的电荷斥力、升高温度以降低头基的水化,甚至采用合适的二元表面活性剂复配等等 .当前一种从根本上克服头基间分离倾向的化学方法正受到关注 [1],这种方法通过化学键将二个单头基单烷烃链表面活性剂在离子头基处用联接基团( spacer)使其联接起来,从而获得称之为 Gemini的新型表面活性剂 [2]. Gemini表面活性剂大大促进了其 "…  相似文献   

7.
表面活性剂可以与污泥表面的胞外聚合物(EPS)吸附形成胶束,释放出自由水和结合水,从而达到改善污泥脱水性能的目的.本文采用粗粒化的分子动力学模拟方法,研究了Gemini表面活性剂与EPS形成复合物的过程和结构.聚电解质链的亲疏水性对吸附过程有显著影响,亲水聚电解质链与Gemini表面活性剂吸附的主要驱动力为静电吸引,Gemini表面活性剂头基吸附在链上,尾链朝向溶剂;疏水聚电解质链与Gemini表面活性剂吸附过程由静电作用与疏水作用共同促进,Gemini表面活性剂以平行于聚电解质链的构型存在.Gemini表面活性剂联结基团长度对吸附过程的影响甚微;聚电解质链的电荷密度对亲水聚电解质链的吸附产生协同作用,对疏水聚电解质链的吸附不产生作用.  相似文献   

8.
以芘为荧光探针、二苯酮为猝灭剂,用稳态荧光探针法测定了新型Gemini表面活性剂的临界胶团浓度(CMC)、胶团聚集数(Nagg)及胶团微极性.研究了Gemini表面活性剂结构和氯化钠浓度对CMC、Nagg、胶团微极性的影响.结果表明,新型Gemini表面活性剂的CMC比常规表面活性剂的CMC低1—2个数量级.当疏水基碳原子数增加时,CMC依次降低,Nagg增大,胶团微极性减小.当氯化钠浓度增大时,Nagg增大,胶团微极性减小.  相似文献   

9.
研究了烷基苯磺酸盐Gemini表面活性剂Ia与非离子表面活性剂C10E6溶液混合胶团中分子间的相互作用. 通过表面张力法测定了Ia 和C10E6不同比例不同温度下的临界胶束浓度(cmc). 结果表明, 两种表面活性剂以任何比例复配的cmc比单一表面活性剂的cmc都低, 表现出良好的协同效应. 传统型非离子表面活性剂C10E6、Gemini表面活性剂Ia及混合物的cmc都随着温度升高而降低. 而且, 任何配比的混合胶团中两种表面活性剂分子间的相互作用参数β都是负值, 这说明两种表面活性剂在混合胶团中产生了相互吸引的作用. 混合表面活性剂体系的胶团聚集数比单一Ia的大, 但比单一C10E6的小. 向Gemini表面活性剂Ia胶束中加入非离子表面活性剂C10E6会使胶束的微观极性变小.  相似文献   

10.
季铵盐型Gemini表面活性剂的胶束化动力学研究   总被引:1,自引:1,他引:0  
采用停流法并结合Aniannson-Wall理论, 研究了联接基为(CH2)2, (CH2)3, (CH2)4和(CH2)6的季铵盐型Gemini表面活性剂胶束的形成-破坏过程. 动力学的研究结果表明, 胶束形成-破坏过程的弛豫时间(τ2)与联接基的长度、表面活性剂的浓度、反离子的浓度以及温度有关. 随联接基长度的增加, 季铵盐型Gemini表面活性剂胶束形成-破坏过程的弛豫时间缩短. 当温度高于293 K时, 随着反离子浓度的增加, 1/τ2将出现一个最低值. 根据核化焓结果提出了不同的联接基长度的季铵盐型Gemini表面活性剂具有不同的胶束形成-破坏过程的机理.  相似文献   

11.
 The electrophoretical mobility of dodecyltrimethyl-ammonium hydroxide micelles has been measured at two different concentrations giving values similar to that determined in other surfac-tants. There is a good agreement between micelle ionization degrees computed from zeta potential measurements and those from ion-selective electrodes experiments. This demonstrates that electrophoresis experiments may be replaced by the simpler ion-selective electrode measurements to determine micelle surface potential. It has also been concluded that ion-selective electrodes detect only the non-micellised ions, that only free ions contribute to the intermicellar solution ionic strength, and micelles do not affect the result, and that the dependence of the electrophoretic mobility on the soap concentration is due to the reduction of the micelle net charge when the ionic strength of the intermicellar solution arises. Received: 2 December 1996 Accepted: 24 February 1997  相似文献   

12.
Aqueous mixtures containing a homopolymer, poly(vinylpyrrolidone) (PVP), or a hydrophobically modified graft copolymer, HM-pullulan, (PULAU9, where 9 stands for the nominal substitution degree), and different Gemini surfactants have been investigated at 25.0 degrees C. A wide variety of experimental conditions were addressed by changing the amount of polymer and of surfactant. The Gemini surfactants were synthesized, purified, and characterized by routine methods. They differ from each other in polar head groups (two sulfonate-, two quaternary ammonium-, or two arginine-based groups), in alkyl chain length (11 or 12 carbon atoms), and in the distance between the polar head groups. The spacers consist of 2, 3, and 6 methylene units or 3 oxyethylene units. Surface activity and solution calorimetry measurements yield some physicochemical features inherent to micelle formation and polymer-surfactant interactions. The data are supported by ionic conductivity, detecting the critical thresholds and quantifying the modifications in binding associated with critical association (CAC) and micelle formation (CMC*). The Gibbs energy of transfer from the micelles to a polymer-binding site, DeltaGtrans, was evaluated from the CAC/CMC* ratios versus the amount of added polymer. A similar procedure determined the enthalpy of transfer, DeltaHtrans. DeltaGtrans decreases with added polymer, whereas DeltaHtrans becomes more negative on increasing the amount of polymer in the medium. According to the selected data presented here, cationic Geminis do not interact with PVP, while significant interactions have been observed in other surfactants. In mixtures with PULAU9, the interaction is significant for all Geminis. This effect is due to interactions between the surfactants and the hydrophobic alkyl groups on the main polymer chain. The pendent groups facing away from the polysaccharide chain act as binding sites for aggregates onto such polymers.  相似文献   

13.
利用荧光探针法研究了双子型阳离子表面活性剂与明胶的相互作用,考察了此类表面活性剂的分子结构和明胶对临界胶团浓度(cmc)、胶团聚集数(Nagg)和胶团微极性的影响.结果表明,当双子型阳离子表面活性剂的疏水基增长时,cmc减少,Nagg增加,胶团的微极性降低;加入明胶后,双子型阳离子表面活性剂的Nagg减少,cmc和胶团微极性增加.  相似文献   

14.
赵剑曦  谢丹华 《化学进展》2012,24(4):456-462
本文从分析蠕虫胶束形成的分子几何条件和自由能驱动因素入手,总结了传统阴离子表面活性剂蠕虫胶束的形成和性质,指出制约其构筑和产生优良黏弹性的原因。在此基础上,介绍了Gemini表面活性剂构筑蠕虫胶束的分子结构优势,以及由此构筑阴离子蠕虫胶束的研究进展,尤其是长刚性联接链Gemini表面活性剂形成的蠕虫胶束。最后特别指出,基于新颖分子结构优势,Gemini表面活性剂可望成为蠕虫胶束构筑的主要分子对象。  相似文献   

15.
Self-assembled Gemini surfactant film-mediated dispersion stability   总被引:1,自引:0,他引:1  
The force-distance curves of 12-2-12 and 12-4-12 Gemini quaternary ammonium bromide surfactants on mica and silica surfaces obtained by atomic force microscopy (AFM) were correlated with the structure of the adsorption layer. The critical micelle concentration was measured in the presence or absence of electrolyte. The electrolyte effect (the decrease of CMC) is significantly more pronounced for Gemini than for single-chain surfactants. The maximum compressive force, F(max), of the adsorbed surfactant aggregates was determined. On the mica surface in the presence of 0.1 M NaCl, the Gemini micelles and strong repulsive barrier appear at surfactant concentrations 0.02-0.05 mM, which is significantly lower than that for the single C(12)TAB (5-10 mM). This difference between single and Gemini surfactants can be explained by a stronger adsorption energy of Gemini surfactants. The low concentration of Gemini at which this surfactant forms the strong micellar layer on the solid/solution interface proves that Gemini aggregates (micelles) potentially act as dispersing agent in processes such as chemical mechanical polishing or collector in flotation. The AFM force-distance results obtained for the Gemini surfactants were used along with turbidity measurements to determine how adsorption of Gemini surfactants affects dispersion stability. It has been shown that Gemini (or two-chain) surfactants are more effective dispersing agents, and that in the presence of electrolyte, the silica dispersion stability at pH 4.0 can also be achieved at very low surfactant concentrations ( approximately 0.02 mM).  相似文献   

16.
17.
In micellar solutions of sodium dodecyl sulfate, as the concentration of surfactants increases, the spheroid shape of the micelles changes from almost spherical to ellipsoidal with increasing ratio of half-axes ratio, and further the transition to cylindrical micelles occurs. The micelles in an aqueous solution can directly contact (compact aggregates) or be separated from one another by layers of intermicellar medium (periodical colloid structures). In the latter case, the thickness of the layer can significantly exceed the micelle size, and then no mutual correlation in micelle arrangement is observed. According to the data of small-angle X-ray scattering, the relationship between the surfactant concentration and formation of “quasi-crystalline” micellar structure is nonlinear, which can be due to both micelle aggregation processes and nonuniformity of their structure. The possible influence of ordered micellar structures on the diffusion mobility of micelles is shown.  相似文献   

18.
Here, we review two recent theoretical models in the field of ionic surfactant micelles and discuss the comparison of their predictions with experimental data. The first approach is based on the analysis of the stepwise thinning (stratification) of liquid films formed from micellar solutions. From the experimental step-wise dependence of the film thickness on time, it is possible to determine the micelle aggregation number and charge. The second approach is based on a complete system of equations (a generalized phase separation model), which describes the chemical and mechanical equilibrium of ionic micelles, including the effects of electrostatic and non-electrostatic interactions, and counterion binding. The parameters of this model can be determined by fitting a given set of experimental data, for example, the dependence of the critical micellization concentration on the salt concentration. The model is generalized to mixed solutions of ionic and nonionic surfactants. It quantitatively describes the dependencies of the critical micellization concentration on the composition of the surfactant mixture and on the electrolyte concentration, and predicts the concentrations of the monomers that are in equilibrium with the micelles, as well as the solution’s electrolytic conductivity; the micelle composition, aggregation number, ionization degree and surface electric potential. These predictions are in very good agreement with experimental data, including data from stratifying films. The model can find applications for the analysis and quantitative interpretation of the properties of various micellar solutions of ionic surfactants and mixed solutions of ionic and nonionic surfactants.  相似文献   

19.
Aqueous salt solutions of ionic surfactants in both spherical and rod-like micelles have been treated on the basis of a statistical thermodynamic theory, and the double logarithmic relationship between micelle molecular weight and ionic strength is derived for each micelle. Counterion binding on both micelles are assumed to occur specifically, and their degrees of dissociation are related to the slopes of the linear double logarithmic relations. It is found from the relationship observed for typical surfactants that the effective charge of spherical micelles is 29±4. The degree of dissociation of rod-like micelles of these surfactants is primarily determined by the counterion species, yielding values 0.8 for Na+, 0.4–0.6 for Cl and 0.2–0.3 for Br. Hydrophilic hydration of both micelles can be evaluated from the intercepts of the linear relations. Hydrophilic hydration acts repulsively in spherical micelles, while it is attractive or much less repulsive in rod-like micelles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号