首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文采用双包层掺镱光纤作为增益介质,用单壁碳纳米管作为饱和吸收体,获得最高输出功率为336 mW的锁模脉冲激光.用飞秒激光诱导水击穿法直接在单模光纤上制备出D形区,通过在D形光纤上滴涂单壁碳纳米管溶液,成功制备出碳纳米管饱和吸收体,并对其饱和吸收特性进行测试,发现其调制深度为27%.利用该饱和吸收体作为锁模器件,制备出具有环形腔结构的锁模光纤激光器.当抽运功率为4W时,获得了脉宽为93.8 fs,中心波长为1083.8 nm,3 dB谱宽为8.6 nm,重复频率为5.59 MHz,平均功率为336 mW的飞秒脉冲激光输出.  相似文献   

2.
An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide(MoSe_2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe_2 saturable absorbers based on tapered fibers.  相似文献   

3.
We demonstrate the generation of mode-locked pulses in an erbium-doped fiber laser(EDFL) by using a new manganese-doped cadmium selenide quantum-dots-based saturable absorber. The laser produces a soliton pulse train operating at 1561.1 nm with a repetition rate of 1 MHz, as the pump power is varied from 113 to 250 m W.At the maximum pump power, we obtain the pulse duration of 459 ns with a signal-to-noise ratio of 50 dB.  相似文献   

4.
We report what we believe to be the first passive mode-locking of Cr:forsterite laser using a single-walled carbon nanotube saturable absorber (SWCNT-SA). The dispersion-compensated Cr:forsterite laser in a self-starting configuration produces nearly Fourier transform-limited pulses as short as 120 fs near 1.25 microm. The maximum average output power of 202 mW obtained with a 5% output coupler at a repetition rate of 79.1 MHz represents, to the best of our knowledge, the highest power level ever reported for SWCNT-SA mode locking of solid-state lasers.  相似文献   

5.
A novel two-section integrated mode-locked laser diode (MLLD) with a separate ultrafast uni-traveling carrier (UTC) saturable absorber section and semiconductor optical amplifier gain section is demonstrated. The UTC absorber is composed of a thin p-InGaAsP absorbing layer and an intrinsic InGaAsP collecting layer. By confining the photoexcitation process to the thin highly doped absorbing layer, the diffusion-limited hole extraction process is greatly enhanced. The investigated MLLD produces 600 fs uncompressed optical pulses at a 42 GHz repetition rate.  相似文献   

6.
A Q-switched ytterbium-doped fiber laser(YDFL)is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide(MWCNTs-PEO)film as a passive saturable absorber(SA).The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film.Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation.The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW.The YDFL generates a stable pulse train with repetition rates ranging from7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW.At 59.55-mW pump power,the lowest pulse width and the highest pulse energy are obtained at 12.18μs and 143.5 nJ,respectively.  相似文献   

7.
A Q-switched ytterbium-doped fiber laser (YDFL) is proposed and demonstrated using a newly developed multi-walled carbon nanotubes polyethylene oxide (MWCNTs-PEO) film as a passive saturable absorber (SA). The saturable absorber is prepared by mixing the MWCNTs homogeneous solution into a dilute PEO polymer solution before it is left to dry at room temperature to produce thin film. Then the film is sandwiched between two FC/PC fiber connectors and integrated into the laser cavity for Q-switching pulse generation. The laser generates a stable pulse operating at wavelength of 1060.2 nm with a threshold pump power of 53.43 mW. The YDFL generates a stable pulse train with repetition rates ranging from 7.92 to 24.27 kHz by varying 980-nm pump power from 53.42 to 65.72 mW. At 59.55-mW pump power, the lowest pulse width and the highest pulse energy are obtained at 12.18 μs and 143.5 n J, respectively.  相似文献   

8.
We report the fabrication of a saturable absorber based on SU8 single wall carbon nanotube (SWCNT) composite material. Thin films with a controllable thickness can be fabricated using a simple and reliable process. These films can be inserted between two FC/APC connectors in order to have an inline saturable absorber. A passive mode-locked laser was built by interleaving the fiberized saturable absorber in an erbium-doped fiber (L-band) ring cavity laser. The laser produces 871 fs pulses with a repetition rate of 21.27 MHz and a maximum average power of 1 mW.  相似文献   

9.
We study theoretically a broad-area vertical cavity surface emitting laser (VCSEL) with a saturable absorber. We show numerically the presence of cavity solitons in the system: they exist as solitary structures formed through a modulationally unstable homogeneous lasing state that coexists with a background with zero intensity. Such a peculiar scenario endows the solitons with unique properties compared to cavity solitons in most previously studied optical systems. In particular, these solitons do not as such rely on a proper phase of the addressing pulses to be either created or deleted. We show that exciting and deleting the solitons depend crucially on whether a threshold in the soliton peak has been reached.  相似文献   

10.
We report a ring-cavity thulium fiber laser mode locked with a single-wall carbon nanotube absorber used in transmission. A carboxymethyl cellulose polymer film with incorporated carbon nanotubes synthesized by the arc discharge method has an absorption coinciding with in the amplification bandwidth of a Tm-doped fiber. This laser is pumped by an erbium fiber laser at 1.57 microm wavelength and produces a 37 MHz train of mode-locked 1.32 ps pulses at 1.93 microm wavelength with an average output power of 3.4 mW.  相似文献   

11.
147 fs碳纳米管倏逝场锁模全光纤掺铒光纤激光器   总被引:2,自引:0,他引:2       下载免费PDF全文
利用化学腐蚀法在光纤包层表面成功制备了调制深度为3.9%的单壁碳纳米管饱和吸收体.组建了环形腔结构的全光纤掺铒光纤激光器,以制备的单壁碳纳米管薄膜为锁模元件,利用倏逝场锁模实现了锁模输出.锁模脉冲的中心波长为1556 nm,3 dB光谱带宽为24 nm,脉冲宽度为147 fs,重复频率为150 MHz.在520mW抽运功率下,平均输出功率为21 mW,相应的单脉冲能量为0.14 nJ.  相似文献   

12.
A saturable absorber is commonly employed to generate an ultrashort laser with a mode-locking scheme. In an erbium-doped fiber laser system, the laser regimes of either 1530 or 1550 nm wavelength are procured based on the absorption profile of the erbium-doped fiber. The absorption of the erbium-doped fiber is designed to emit at both wavelengths by controlling the net gain of the laser cavity. Subsequently, simultaneous erbium-doped fiber laser emission is attained at 1533.5 and 1555.1 nm with the pulse duration of 910 and 850 fs, respectively.Therefore, this work maximizes the output portfolios of a mode-locking fiber laser for dual-wavelength ultrashort pulses emission.  相似文献   

13.
A single-wall carbon nanotubes based saturable absorber wafer with absorption wavelength around 1047 nm was fabricated by electric Arc discharge method and employed in a diode end-pumped Nd:YLF laser as saturable absorber. Passively continuous wave mode-locking oscillation was achieved in the pump range form 6.7 to 8.0 W. The duration and repetition rate of the mode-locked pulses were 10 ps and 59 MHz, respectively. The average output power was 280 mW.  相似文献   

14.
We demonstrate an all-fiber passively multi-wavelength Q-switched Erbium doped fiber laser (EDFL) based on a short Carbon Nanotube based saturable absorber. With the saturable absorber connected in a longer standing wave based fiber laser cavity, stable single, dual, and multiple wavelength Q-switched low threshold EDFL are achieved. Experimental results show that the output pulse of the filtered single wavelength has the same repetition rate as that of the multi-wavelength output while its average output power is lower than that of the multi-wavelength output.  相似文献   

15.
Zhang  L. Q.  Zhuo  Z.  Wang  J. X.  Wang  Y. Z. 《Laser Physics》2012,22(2):433-436
A passively graphene Q-switched Erbium doped fiber laser around 1.5 μm is demonstrated in this paper. The graphene saturable absorber was fabricated by sandwiching a thin graphene film produced via chemical vapor deposition between two FC fiber connectors. Stable pulse trains were obtained with the pulse repetition rate varying between 34.72 and 53.2 kHz and the average output power ranging from 0.504 mW to 0.926 mW. The achieved shortest pulse duration and highest pulse energy were 3.2 μs and 17.41 nJ, respectively.  相似文献   

16.
A mode locked Er-doped fiber laser based on a single-wall carbon nanotube saturable absorber is demonstrated. A high quality single-wall carbon nanotubes (SWCNTs) absorber film is fabricated by a polymer composite. The pulse duration is 488 fs with 9.6-nm spectral width at the center of 1564 nm. The repetition rate is 30.4 MHz. The maximum output power is 3 mW. And the single pulse energy is 0.1 nJ.  相似文献   

17.
We demonstrated four different laser operational states in the same passive fiber ring laser cavity by controlling solely the polarization state in a saturable absorber. The demonstrated laser operational states were continuous wave, mode-locking, Q-switching, and Q-switched mode-locking. The saturable absorber was fabricated by spin-coating a single-walled carbon nanotubes (SWCNT)/polymer composite on a side polished fiber providing enhanced nonlinear interaction with the SWCNT. The wide tuning range of the saturable absorber allows the simple means to generate different forms of laser output from a single laser cavity.  相似文献   

18.
We have proposed and demonstrated a passively harmonic mode-locked fiber laser based on a single-walled carbon nanotube saturable absorber (SWCNT-SA) that has a controllable repetition rate. With the pump power fixed, we have experimentally observed harmonically mode-locked optical pulses with repetition rates that can be controlled over the range from the fundamental to the seventh-order mode through careful adjustment of the polarization controller only. From the experimental results, we deduce that the likely origin of the self-stabilization is the result of global and local soliton interactions induced by the continuous wave (CW) components.  相似文献   

19.
L. Li  D. X. Ren  X. Q. Wu  Q. Ge  S. Huang  B. L. Yu 《Laser Physics》2012,22(12):1847-1850
A novel configuration of fiber ring laser acoustic sensor, which adopts single-mode fiber as sensing element, is proposed and demonstrated. Linewidth less than 1 kHz is achieved by introducing a segment of erbium-doped fiber in the reflecting arm as saturable absorber. A polarization independent unbalanced Michelson interrogation interferometer and phase generated carrier demodulation technique are adopted to recover signal. Experiments demonstrate that the phase sensitivity is 0.018 rad/nm in good linearity and equivalent minimum detect able length change reaches 19.1 pm.  相似文献   

20.
A 1550 nm Q-switched fiber laser using a carbon platinum saturable absorber deposited on side-polished fiber(SPF) is proposed and demonstrated. The SPF is approximately 2 mm with a polarization-dependent loss(PDL)of 0.4 dB and an insertion loss of 2.5 dB. A stable Q-switched output spectrum is obtained at 1559.34 nm with a peak power of ~6 mW, a pulse width of 1.02 μs, pulse energy of 5.8 nJ, average output power of 0.76 mW, and a repetition rate of 131.6 kHz taken at a pump power of 230.0 mW. A signal-to-noise ratio of 49.62 d B indicates that the Q-switched pulse is highly stable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号