首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
A frequency stabilized, tuneable CO2 laser is used to measure the unsaturated absorption coefficients of pure carbon dioxide gas at pressures of 1 and 100 Torr and temperatures of 296–700 K. The radiative transition probability and the temperature dependence of the collisional self-broadening coefficient are determined for the R22 absorption line of the 1000-0001 transition of the CO2 molecule. The exponent on the temperature is found to depend on the method used to determine the collisional self-broadening coefficient.  相似文献   

2.
High-resolution absorption lineshapes of two H2O transitions near 7185.60 and 7154.35 cm−1 have been recorded in a heated static cell as a function of temperature (296-1100 K) and pressure (6-830 Torr) using two distributed-feedback diode lasers. The measured absorption spectra are least squares fit to both Voigt and Galatry profiles. Strong collisional-narrowing effects are observed in the Ar-broadened H2O spectra at near-atmospheric pressure due to the relatively weak collisional broadening induced by Ar-H2O collisions, while collisional narrowing is not significant for pure H2O absorption lineshapes. Line strengths and self-broadening coefficients are inferred from the pure H2O absorption spectra and compared with published data. Temperature dependences of the Ar-induced broadening, narrowing, and shift coefficients are determined using Galatry fits to the absorption data. The measured collisional-narrowing parameters have similar temperature dependence to the collisional-broadening coefficients.  相似文献   

3.
Ar-broadening coefficients have been measured in the P- and R-branches of the ν5 fundamental band of C2H2 for 30 lines at room temperature and 8 lines at −100 °C, using a tunable diode-laser spectrometer. These lines with J values ranging from 2 to 27 are located in the spectral range 665-795 cm−1. The collisional widths are obtained by fitting each absorption line with three lineshape models: the Voigt profile, the Rautian profile accounting for the Dicke narrowing effect, and a general Rautian profile including the absorber speed-dependent collisional broadening. The latter model provides significantly larger broadening coefficients than the Voigt model. These coefficients are also calculated from a semiclassical theory performed by using a simple intermolecular potential with two adjustable parameters. Finally, the temperature dependence of the broadening coefficients has been determined both experimentally and theoretically.  相似文献   

4.
A laser spectrometer based on a continuous-wave thermoelectrically-cooled distributed feedback quantum cascade laser at ∼2308 cm−1 has been evaluated for measurement of 13CO2/12CO2 isotopic ratio (δ13C) changes in exhaled breath samples and in CO2 gas flows in the concentration range 1-5%. Mid-infrared CO2 absorption spectra were measured in a 54.2-cm long optical cell using balanced detection whereby the beam passing through the cell was ratioed against a reference beam split-off from the main beam before the cell. Signal-to-noise ratios (SNR) were estimated for CO2 concentration measurements determined from either absorption peak amplitude or absorption peak area. The highest SNR were achieved in the measurements based upon a fitted absorption peak area. Typical short-term δ13C precisions of 1.10/00 (1-s integration time) and 0.50/00 (8-12-s integration time) were estimated from the two-sample (Allan) variance plots of data recorded in the optical cell at a pressure of 20 Torr and with no active temperature stabilization of the cell and gas flow. The best precision of 0.120/00 was achieved for averaging 80 successive 1-s integration time measurements.  相似文献   

5.
Relative coefficients of collisional broadening caused by N2O molecules and their temperature dependences are determined for absorption lines (1000–0001 transition, R-branch) of the CO2 molecule.  相似文献   

6.
CO2 broadened spectra of the 1–0 band of H35Cl and H37Cl, observed near 2886 cm?1, and the 1–0 band of D35Cl and D37Cl, located near 2089 cm?1, have been recorded at room temperature and five total pressures between 150 and 700 Torr, using a Bruker IFS125HR Fourier transform spectrometer. Spectra of pure HCl were also recorded. CO2 broadening and shift coefficients of HCl and DCl have been measured using multi-spectrum non-linear least squares fitting of Voigt profiles. The analysis of the 1–0 band of DCl was complicated by the presence of overlapping CO2 bands, which were included in the treatment as absorption coefficients calculated taking line-mixing effects into account.  相似文献   

7.
Using a diode-laser spectrometer, self-broadening coefficients have been measured at three temperatures (246.2, 226.2 and 150.2 K) for 11 spectral lines in the ν9 fundamental band of 12C2H6. The collisional widths have been obtained by fitting each experimental absorption profile with a Rautian model. The temperature dependence exponent n was also determined for each line, and found to be constant within experimental uncertainties. The mean value is equal to n = 0.676.  相似文献   

8.
The absorption line profiles of water vapor in binary mixtures with diatomic molecules H2, N2, and O2 have been recorded on a diode laser spectrometer. The profiles of several lines of the 101 band have been studied near 1.39 μm with a spectral resolution of 3 × 10?4 cm?1. The pressure of the binary mixtures was varied from 0 to 200 Torr. The experimental data obtained have been used to test the Voigt, Rautian-Sobel’man, and Galatry theoretical models of a spectral line profile. The coefficients of collisional narrowing have been determined from the results of the fitting.  相似文献   

9.
Isotope separation of tritium from deuterium in heavy water was attempted by CO2-laser-induced, highly-selective multiphoton dissociation of C2TF5 present in C2DF5. Single-step T/D separation factors exceeding 3000, 1000, and 500 were attained, respectively, for the first time with CO2 laser 10P(34) 931.0 cm?1 at 10, 20, and 30 Torr pentafluoroethane pressures at ?78 °C (i.e., equivalent to 15, 30, and 45 Torr at room temperature).  相似文献   

10.
N2-broadening coefficients have been measured for 41 transitions of PH3 at −100 °C in the QR branch of the ν2 band and the PP, RP, and SP branches of the ν4 band, using a tunable diode-laser spectrometer. The recorded lines with J values ranging from 1 to 13 and K from 0 to 10 are located between 1026 and 1093 cm−1. The collisional widths are determined by fitting each spectral line with a Voigt profile, a Rautian profile, and a speed-dependent Rautian profile. The latter models provide larger broadening coefficients than the Voigt model. These coefficients have also been calculated on the basis of a semiclassical model of interacting linear molecules by considering an atom-atom Lennard-Jones potential in addition to the electrostatic contributions. By comparing broadening coefficients at room and low temperatures, the temperature dependence of these broadenings has been determined both experimentally and theoretically.  相似文献   

11.
The absolute frequencies of 39 lines in the 0002-0000, 2001-0000, and 1201-0000 bands of N2O in the range 4300–4800 cm?1 have been measured by heterodyne frequency techniques. The lines were each measured in Doppler-limited absorption, with a color-center laser as a tunable probe of the N2O and two stabilized CO2 lasers as reference frequencies. New rovibrational constants have been fitted to these measurements. Tables of calculated transition frequencies are given, with estimated absolute uncertainties as small as 10?4 cm?1. The pressure shifts of four lines have been measured, and the values fall within the range of 0 to ?2 MHz/kPa (0 to ?0.2 MHz/Torr).  相似文献   

12.
The N2- and O2-broadening effect have been investigated for 10 absorption lines of the CO2 (3001)III ← (0000) band centered at 6231 cm−1, in the range from P(28) to R(28) by a near-infrared diode-laser spectrometer. We have analyzed the observed line profiles with the Galatry function, and determined the N2- and O2-broadening coefficients precisely. The air-broadening coefficients for these lines have been derived. The present results are compared with those of the previous studies for this band and with some of the other bands.  相似文献   

13.
Using a tunable diode-laser spectrometer, we have measured the self-broadening coefficients and strengths of 26 absorption lines in the ν3 ? ν1 band of 12CO2 and 13CO2 at room temperature. These lines, ranging from P(34) to R(40), are located around 960.9 and 913.4 cm?1, respectively for the 12CO2 and 13CO2 molecules. The collisional widths and the intensities were obtained by fitting Voigt and Rautian and Sobel’man profiles to the measured shapes of the lines. From the individual line intensities and using a least-squares method, we have determined the vibrational band strength as well as the Herman–Wallis factors for the ν3 ? ν1 band of 12CO2 and 13CO2.  相似文献   

14.
O2-broadening coefficients have been measured for 16 lines in the P and R branches of the fundamental ν3 band of 12C32S2 at room and low temperatures (298.0, 273.2, 248.2, 223.2, and 198.2 K), using a tunable diode laser spectrometer and a low temperature cell. These lines from P(62) and R(64) are located in the spectral range 1519-1547 cm−1. The collisional half-widths are obtained by fitting each observed profile with the Voigt and Rautian lineshape models. The broadening coefficients have also been calculated at all experimental temperatures using a semiclassical calculation performed by considering in addition to the electrostatic quadrupole-quadrupole interaction, a simple anisotropic contribution. Finally, from all the results, the parameter n of the temperature dependence of the broadening coefficients has been determined both experimentally and theoretically.  相似文献   

15.
We have measured the room temperature pressure broadening coefficients, γ, of over 100 lines in five Q-branches of the ν5 perpendicular band of methyl iodide (12CH3I) using tuneable diode laser absorption spectroscopy. The profiles of individual lines in the PQ2, PQ4, PQ5, PQ6 and RQ3 branches were recorded in a 1 m long White cell and at nitrogen or oxygen pressures up to 15 Torr. The lines were fitted to the Voigt profile to obtain the collision broadened line widths. Within individual Q-branches the broadening coefficients decreased monotonically with increasing J and for nitrogen broadening varied between 0.19 cm−1 atm−1 at low J and 0.12 cm−1 atm−1 at high J. The corresponding oxygen broadening coefficients were approximately 20% smaller. Self broadening coefficients were also measured for several of the Q-branches and found to be up to ∼4 times higher than the corresponding nitrogen broadening values.  相似文献   

16.
In this paper we present measurements of the air-broadening coefficients of HO2 at room temperature in the 2ν1 band around 1.5 microns. The HO2 radicals were created by flash photolysis of SOCl2 in a flow of O2/CH3OH mixtures. To observe air-broadening, N2 (79%) and O2 (21%) were added using calibrated flow controllers and a total pressure controller. The total pressure was monitored in parallel using a capacitive pressure gauge. Air-broadening coefficients at 296 K were determined for 34 absorption lines between 6631 and 6671 cm−1. The air-broadening coefficients of HO2 show a rotational dependence (decreasing from about 0.14 cm−1/atm for N″ = 3 to about 0.09 cm−1/atm for N″ = 10). No evidence for collisional narrowing was observed.  相似文献   

17.
The pressure-induced shifting coefficients and line mixing parameters have been studied in the ν4 band of NH3 perturbed by CO2 and He at room temperature. Measurements have been made using a high-resolution Fourier transform spectrometer. The measurements cover the PP and RP branches of the ν4 band and are located in the spectral range 1470-1600 cm−1. The line shift and line mixing parameters have been derived from a non-linear least-squares multi-pressure fitting technique. The shift coefficients are compared to a semiclassical calculation based on the Robert-Bonamy formalism employing two types of intermolecular interactions. It is shown that the line shifts mainly originate from the vibrational dephasing effects. The observed interference parameters are compared with calculations based on state-to-state collisional cross sections calculated from the intermolecular potential with a semiclassical approach. The results of computation are in reasonable agreement with the experimental data. It is demonstrated also that the line mixing process mainly originates from the energy transfer between symmetric and antisymmetric components of the inversion doublets.  相似文献   

18.
水汽分子对CO_2谱线加宽的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
报道了以高分辨力连续可调谐中红外差频激光为探测光源,结合可调长光程怀特池,利用直接吸收的方法探测了CO2的10011←10002带R支以及部分P支在室温下的水汽加宽吸收光谱。在2422cm-1到2457cm-1范围内共有26条吸收谱线被探测到,采用Voigt线型对吸收谱线进行拟合,得到了CO2光谱的水汽加宽系数,结果显示CO2的水汽加宽系数平均比干燥空气的加宽系数大52%。利用实验测得的CO2的水汽加宽系数与HITRAN04数据库中CO2谱线的线位置、线强和干燥的空气加宽系数进行比较,分析了在实际大气中(海平面,10km光程)不存在水汽和存在水汽(含有2.0kPa水汽)时该波段CO2的大气透过率,结果表明潮湿空气与干燥空气之间的最大透过率差约为0.5‰。  相似文献   

19.
Using a high resolution Raman spectrometer, we have measured Ar-broadening coefficients in the ν2Q branch of C2H2 for 22 lines at 295 K, 20 lines at 174 K, and 16 lines at 134 K. These lines with J values ranging from 1 to 23 are located in the spectral range 1970.9-1974.3 cm−1. The collisional widths are obtained by fitting each spectral line with a Rautian profile. The resulting broadening coefficients are compared with theoretical values arising from close coupling and coupled states calculations. A satisfactory agreement is obtained at room as well as at low temperatures, especially for odd J lines. By comparing broadening coefficients at 295, 174, and 134 K from a simple power law, the temperature dependence of these broadenings has been determined both experimentally, and theoretically.  相似文献   

20.
Optical absorption in MnIn2S4 single crystals has been studied. Direct and indirect optical transitions are found to occur at photon energies of 1.90?C2.16 eV in the temperature range of 80?C342 K. The temperature dependence of the band gap is determined; its temperature coefficients E gd and E gi are found to be ?4.84 × 10?4 and ?6.33 × 10?4 eV/K, respectively. The electron-phonon interaction is the main mechanism of the temperature shift of the intrinsic-absorption edge. MnIn2S4 single crystals exhibit anisotropy in polarized light at the absorption edge in the temperature range of 90?C190 K; the nature of this anisotropy is explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号