首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
It has been proved by NMR. measurements at low temperatures that the ligand displacement reactions of (π-all)Pd(π-C5H5) and Lewis bases L yielding PdL4 proceed by a π → σ rearrangement of the allylic group as the primary step. The organic reaction product is the 1-isomer of the corresponding allylcyclopentadiene but in the reactions of (π-1,1,2-Me3C3H2)Pd(π-C5H5) with L besides the isomeric allylcyclopentadienes also 2,3-dimethylbutadiene and cyclopentadiene are formed. The reaction mechanism will be discussed.  相似文献   

5.
6.
7.
8.
9.
10.
11.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.  相似文献   

12.
13.
14.
15.
16.
17.
Noncovalent interactions involving aromatic rings, such as π‐stacking and CH/π interactions, are central to many areas of modern chemistry. However, recent studies proved that aromaticity is not required for stacking interactions, since similar interaction energies were computed for several aromatic and aliphatic dimers. Herein, the nature and origin of π/π, σ/σ, and σ/π dispersion interactions has been investigated by using dispersion‐corrected density functional theory, energy decomposition analysis, and the recently developed noncovalent interaction (NCI) method. Our analysis shows that π/π and σ/σ stacking interactions are equally important for the benzene and cyclohexane dimers, explaining why both compounds have similar boiling points. Also, similar dispersion forces are found in the benzene???methane and cyclohexane???methane complexes. However, for systems larger than naphthalene, there are enhanced stacking interactions in the aromatic dimers adopting a parallel‐displaced configuration compared to the analogous saturated systems. Although dispersion plays a decisive role in stabilizing all the complexes, the origin of the π/π, σ/σ, and σ/π interactions is different. The NCI method reveals that the dispersion interactions between the hydrogen atoms are responsible for the surprisingly strong aliphatic interactions. Moreover, whereas σ/σ and σ/π interactions are local, the π/π stacking are inherently delocalized, which give rise to a non‐additive effect. These new types of dispersion interactions between saturated groups can be exploited in the rational design of novel carbon materials.  相似文献   

18.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 200 leading journals. To access a ChemInform Abstract, please click on HTML or PDF.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号