首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 698 毫秒
1.
The stationary state distribution of radicals in compartmentalized systems initiated by oil-soluble initiators have been calculated for various cases of single radical formation as well as a simultaneous generation of single radicals and pairs of radicals in the particles. The effect of a contribution from radicals produced by initiator dissolved in the aqueous phase has been considered. Desorption and reabsorption of radicals, aqueous phase termination, total rate of radical formation and the water-solubility of the initiator are quantified in terms of dimensionless parameters. The calculations predict that single radicals generated in the particles are kinetically indistinguishable from radicals produced in the aqueous phase over a wide range of variation of the parameters. It is shown that if the rate of generation of single radicals constitutes only about 10 per cent of the overall rate of radical formation in the particles, the former radicals account for the major part of the rate of polymerization. The mechanisms previously proposed to account for the similar kinetic behaviour observed with water-soluble and oil-soluble initiators are discussed. It is concluded that the present calculations support the view that this similarity is mainly due to radicals produced by the water-soluble fraction of the initiator. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2347–2354, 1997  相似文献   

2.
Expressions for calculating the stationary state distribution of radicals in a bidisperse seed system initiated by oil-soluble initiators were developed. Dimensionless parameters were used throughout, thus making it possible to obtain general trends without introducing specific numerical values. Desorption and reabsorption of radicals, aqueous phase termi-nation, partition of the initiator into the aqueous phase, and a possible generation of single radicals are taken into account. The radical entry and exit rate coefficients are formulated in terms of power laws with respect to particle diameter. No discrimination of the various radical species and their origin is made. The derivation is based on a probabilistic stationary state analysis leading to third-order recurrence relations that are solved using confluent, hypergeometric Kummer functions. A selection of curves illustrating the effect of various dimensionless parameters on the calculated average number of radicals per particle, the order of volume growth with respect to the particle diameter, and relative rates are given. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
A detailed mathematical model of the kinetics of styrene emulsion polymerization has been proposed. Its main features/assumptions are compartmentalization, micellar and homogeneous nucleation, particle formation by both initiator‐derived and desorbed radicals, dependence on the particle size of the rate coefficients, thermodynamic considerations, and aqueous phase kinetics. The model predicts that micellar nucleation dominates over homogeneous nucleation and that the evolution of the nucleation rate reaches a maximum, where desorbed radicals have an important contribution. Initiator‐derived radicals with only one monomeric unit have also a significant contribution on the rate of capture in particles. The results suggest that the correctness of the instantaneous termination approach depends not only on the size of the particle, but also on the type of entering radical (initiator‐derived or monomeric). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2201–2218, 2000  相似文献   

4.
To explain the kinetic features of particle formation and growth in unseeded emulsion polymerization initiated by oil-soluble initiators, a mathematical kinetic model is proposed, based on the assumption that when initiator radicals or monomer radicals in the water phase enter monomer-solubilized emulsifier micelles, initiate polymerization, and propagate to a chain length which is long enough not to desorb from the micelles, the micelles are regarded to be transformed into polymer particles. It is demonstrated by comparing the experimental results obtained in the emulsion polymerization of styrene initiated by the oil-soluble initiator, 2,2'-azobisisobutyronitrile, with sodium lauryl sulfate as emulsifier that the proposed kinetic model satisfactorily explains the kinetic features such as the effects of initial emulsifier, initiator, and monomer concentrations on both the number of polymer particles produced and the monomer conversion versus time histories. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Anticancer modalities based on oxygen free radicals, including photodynamic therapy and radiotherapy, have emerged as promising treatments in the clinic. However, the hypoxic environment in tumor tissue prevents the formation of oxygen free radicals. Here we introduce a novel strategy that employs oxygen‐independent free radicals generated from a polymerization initiator for eradicating cancer cells. The initiator is mixed with a phase‐change material and loaded into the cavities of gold nanocages. Upon irradiation by a near‐infrared laser, the phase‐change material is melted due to the photothermal effect of gold nanocages, leading to the release and decomposition of the loaded initiator to generate free radicals. The free radicals produced in this way are highly effective in inducing apoptosis in hypoxic cancer cells.  相似文献   

6.
7.
The effect of the monomer/water ratio on the rate of polymerization per polymer particle in both seeded emulsion polymerizations and miniemulsion polymerizations was used in an attempt to elucidate the main locus of radical formation in emulsion polymerization initiated by an oil-soluble initiator (AIBN). It was found that, for the rest of conditions constant, the polymerization rate per polymer particle increased when the monomer/water ratio increased, namely when the amount of initiator dissolved in the aqueous phase per polymer particle decreased. This is an evidence against a dominant aqueous phase formation of radicals. On the other hand, these results are consistent with a mechanism in which the radicals are mainly produced in the oil-phase with significant aqueous phase termination.  相似文献   

8.
A simplified model for particle formation in emulsion polymerization (comprising aqueous‐phase propagation to degrees of polymerization which may enter a pre‐existing particle and/or form new particles by homogeneous or micellar nucleation, coupled with the aqueous‐phase and intra‐particle kinetics of oligomeric radicals) is formulated to provide a model suitable for the simulation of systems containing large‐sized particles. The model is particularly useful to explore conditions for growth of large particles while avoiding secondary particle formation. Applied to the Interval II emulsion polymerization of styrene with persulfate initiator at 50°C, it is found that there is an effective maximum particle size that can be achieved if the formation of new particles is to be avoided. The parameter space of initiator concentration, particle number concentration and particle radius is mapped to show a “catastrophe” surface at the onset of new nucleation. Advanced visualization techniques are used to interpret the large number of simulations in the series, showing a maximum achievable particle diameter of around 5 μm.  相似文献   

9.
Polymerization in micellar systems is a technique which allows the preparation of ultrafine as well as coarse latex particles. This article presents a review of the current literature in the field of radical polymerization of classical monomers in micellar systems initiated by oil-soluble initiators. Besides a short introduction to some of the kinetic aspects of emulsion polymerization initiated by water-soluble initiators, we mainly focus on the kinetics and the mechanism of radical polymerization in o/w and w/o micellar systems initiated by classical oil-soluble initiators. The initiation of emulsion polymerization of an unsaturated monomer (styrene, butyl acrylate,...) by a water-soluble initiator (ammonium peroxodisulfate) is well understood. It starts in the aqueous phase and the initiating radicals enter the monomer-swollen micelle. The formed oligomeric radicals are surface active and increase the colloidal stability of the disperse system. Besides, the charged initiating radicals might experience the energetic barrier when entering the charged particle surface. The locus of initiation with oil-soluble initiators is more complex. It can partition between the aqueous-phase and the oil-phase. Besides, the surface-active oil-soluble initiator can penetrate into the interfacial layer. The dissolved oil-soluble initiator in the monomer droplet can experience the cage effect. The small fraction of the oil-soluble initiator dissolved in the aqueous phase takes part in the formation of radicals. The oligomeric radicals formed are uncharged and therefore, they do not experience the energetic barrier when entering the polymer particles. We summarize and discuss the experimental data of radical polymerization of monomers initiated by oil-soluble initiators in terms of partitioning an initiator among the different domains of the multiphase system. The inhibitor approach is used to model the formation of radicals and their history during the polymerization. The nature of the interfacial layer and the type of oil-soluble initiator including the surface active ones are related to the kinetic and colloidal parameters. The emulsifier type and reaction conditions in the polymerization are summarized and discussed.  相似文献   

10.
The exit or desorption of free radicals from latex particles is an important kinetic process in an emulsion polymerization. This article unites a successful theory of radical absorption (i.e., initiator efficiency), based on propagation in the aqueous phase being the rate determining step for entry of charged free radicals, with a detailed model of radical desorption. The result is a kinetic scheme applicable to true “zero-one” systems (i.e., where entry of a radical into a latex particle already containing a radical results in instantaneous termination), which is still, with a number of generally applicable assumptions, relatively simple. Indeed, in many physically reasonable limits, the kinetic representation reduces to a single rate equation. Specific experimental techniques of particular significance and methods of analysis of kinetic data are detailed and discussed. A methodology for both assessing the applicability of the model and its more probable limits, via use of known rate coefficients and theoretical predictions, is outlined and then applied to the representative monomers, styrene and methyl methacrylate. A detailed application of the theory and illustration of the methodology of model discrimination via experiment is contained in the second article of this series. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
An overview of methods for the initiation of radical chain reactions by specific initiator compounds, which generate radicals, is given. These can be utilized to initiate any kind of radical chain reaction by transforming substrates into the desired radical intermediates. Azo initiators, peroxides, nitroxides, trialkylboranes, dialkyl zinc compounds, and type I photoinitiators are discussed, as well as methods of redox‐ and sonochemical initiation. Methods of direct radical formation from the substrates, such as photoredox catalysis or high‐energy irradiation, are not included. The focus of this review lies on rather “low” temperatures in the range of 50 °C down to ?78 °C, which can be useful to achieve more selective reactions. Illustrative applications of such radical chain initiators in a variety of reactions are discussed, including stereoselective ones and polymerizations.  相似文献   

12.
A new approach is presented to calculate both the distribution of particles with iradicals and the average number of radicals per particle in emulsion polymerizations carried out using oil-soluble initiators. The convergence and accuracy of the approach were examined. It was found that, in agreement with previously published experimental results, the present approach predicts a kinetic behavior similar to that found for water-soluble initiators. This effect is primarily due to the desorption of initiator radicals from the polymer particles rather than the contribution of the fraction of oil-soluble initiator dissolved in the aqueous phase.  相似文献   

13.
The antioxidative effect of flavonols and their glycosides against the peroxidation of linoleic acid has been studied in homogeneous solution (tBuOH/H(2)O, 3:2) and in sodium dodecyl sulfate and cetyl trimethylammonium bromide micelles. The peroxidation was initiated thermally by the water-soluble initiator 2,2'-azobis(2-methylpropionamidine) dihydrochloride, and the reaction kinetics were studied by monitoring the formation of linoleic acid hydroperoxides. The synergistic antioxidant effect of the flavonols with alpha-tocopherol (vitamin E) was also studied by following the decay kinetics of alpha-tocopherol and the alpha-tocopheroxyl radical. Kinetic analysis of the antioxidative process demonstrates that the flavonols are effective antioxidants in solution and in micelles, either alone or in combination with alpha-tocopherol. The antioxidative action involves trapping the initiating radicals in solution or in the bulk-water phase of the micelles, trapping the propagating lipid peroxyl radicals on the surface of the micelles, and regenerating alpha-tocopherol by reducing the alpha-tocopheroxyl radical. It was found that the antioxidant activity of the flavonols and their glycosides depends significantly on the position and number of the hydroxy groups, the oxidation potential of the molecule, and the reaction medium. The flavonols bearing ortho-dihydroxy groups possess significantly higher antioxidative activity than those without such functionalities, and the glycosides are less active than their parent aglycones. The activity of the flavonols is higher in micelles than in solution, while the activity of alpha-tocopherol is lower in micelles than in solution. This is because the predominant factor for controlling the activity is the hydrogen-bonding interaction of the antioxidant with the micellar surface in the case of hydrophilic flavonols, while it is the inter- and intramicellar diffusion in the case of lipophilic alpha-tocopherol.  相似文献   

14.
Butyl acrylate conventional emulsion (macroemulsion) and miniemulsion polymerizations were carried out with an oil‐soluble initiator (azobisisobutyronitrile) in the presence or absence of an aqueous‐phase radical scavenger. For macroemulsion polymerization, in the presence of an aqueous‐phase radical scavenger, no particle nucleation occurred, whereas in the absence of an aqueous‐phase radical scavenger, particle nucleation proceeded as expected. For miniemulsion polymerization, the rate of polymerization was much higher in the absence of an aqueous‐phase radical scavenger than in its presence. Furthermore, in the absence of an aqueous‐phase radical scavenger, the miniemulsion polymerization rate increased with reduced droplet size, whereas in the presence of an aqueous‐phase radical scavenger, the trend was reversed. It is concluded that (1) for macroemulsion polymerization, the contribution from free radicals originating in the aqueous‐phase is predominant in the micellar nucleation of particles; (2) free radicals originating in the particle phase contribute to the rate of polymerization and the contribution increases with an increase in the particle size; and (3) for polymer particles with diameters of up to approximately 100 nm, polymerization is initiated from free radicals originating in the aqueous phase. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3200–3211, 2002  相似文献   

15.
The mechanism of stable radical generation in lignin under the action of nitrogen dioxide and NO2 - air mixture is considered. The formation of phenoxyl, iminoxyl and acylaminoxyl radicals has been detected by EPR. The proposed mechanism involves a primary oxidative reaction of phenol groups with dimers of NO2 (nitrosyl nitrate) resulting in the formation of phenoxyl radicals and nitric oxide. In the subsequent recombination of phenoxyl radicals and nitric oxide, nitroso compounds and oximes are formed. By reaction of oximes with radicals NO2, stable iminoxyl radicals are formed. This mechanism is confirmed by kinetic dependencies obtained over a wide range of NO2 concentrations. From IR spectroscopy measurements it follows that hydroxyl groups of non-phenolic structures of lignin are oxidised to aldehydes producing acylaminoxyl radicals by reaction with NO2. The kinetic data show that the adsorption of NO2 on the lignin surface is the rate-determining factor in stable radical formation.  相似文献   

16.
2,3,4,5,6‐Pentafluorostyrene (PFS) was copolymerized with polybutadiene (PB) in tetrahydrofuran using benzoyl peroxide as the initiator at 50, 60, and 80 °C. The copolymerizations follow typical radical polymerization kinetics and behavior. The grafting parameters were evaluated as a function of monomer conversion, initiator concentration, and/or temperature by gel permeation chromatography of directly injected copolymerization mixtures. The grafting efficiencies and grafting ratios are most consistent with a system that terminates by combination and whose graft sites are generated by hydrogen abstraction of allylic radicals by primary initiator radicals. Pure graft copolymers were isolated by extracting unreacted PB into hexanes and PPFS homopolymer into acetone. The similarity of the glass transition temperatures of the PPFS grafts and the corresponding extracted PPFS homopolymers confirms that their lengths are approximately equal. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2874–2891, 2005  相似文献   

17.
Isothermal frontal polymerization is a directional polymerization that utilizes the Norish‐Trommsdorff (gel) effect to produce optical gradient materials. When a solution of methyl methacrylate and thermal initiator contacts a polymer seed (a small piece of poly(methyl methacrylate), a viscous region is formed in which the polymerization rate is faster than in the bulk solution. We obtained definitive evidence of the isothermal nature of the process by placing thermocouples above the propagating front. Using the optical technique of laser line deflection (Weiner's method), we studied the front propagation to determine the induction period, and the maximum distance propagated as a function of the molecular weight of the seed. We determined that the polymer seed must have a minimum molecular weight to initiate a front. We also determined that oxygen would act as a bulk polymerization inhibitor and increase the front propagation distance, but after purging the monomer–initiator solution with oxygen for several hours, the distance was shortened. We ascribed this behavior to the formation of peroxy radicals from the slow decomposition of the initiator and subsequent reaction with oxygen. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3601–3608, 2006  相似文献   

18.
Graft copolymerization of methyl methacrylate on cellulosic materials of various carbonyl and aldehyde contents with the use of a ceric salt as an initiator was studied. It was found that the concentration of the ceric salt which gives the maximum per cent grafting is in good agreement with the equivalent of total carbonyl content in the cellulosic material, and the number of grafted chains in copolymers is roughly proportional to it. However, the molar ratio of the number of grafted chains to total carbonyl content is quite small, being approximately 1:50, and the graft copolymerization can be explained kinetically on the assumption that the number of radicals produced on cellulose by the ceric salt leading to branching is very much smaller than the number of radicals destroyed by the ceric salt, and growing radicals can be stabilized by the termination reaction with the ceric salt or with a cellulose radical. Although both aldehyde and carbonyl groups contribute to the formation of grafted chains, the former are effective mainly at low concentrations of the ceric salt; both groups participate in the production of graft copolymers showing the maximum per cent grafting.  相似文献   

19.
The free radical polymerization of methyl methacrylate (MMA) in the presence of p,p′- disubstituted diphenylbutadiynes was studied. Both the rate and degree of polymerization are somewhat lowered by the presence of the diynes, but the propagating radicals were stabilized giving clear ESR signals of the interacted polyMMA radicals at the polymerization temperature of 70°C. The magnitude of the interaction depended on the electron density of the diynes; in the cases of diphenylbutadiyne and dimethoxycarbonyldiphenylbutadiyne, the intoraction was more enhanced showing ESR signals with smaller spectra widths and increasing the number of radicals with the polymerization time, while in the cases of electron donor-substituted diynes the interaction was weaker and the radical concentration remained constant during the polymerization. These systems are considered to be examples of the stabilization of transient radicals by the direct interaction of radicals with additives without formation or breaking of chemical bonds. No diacetylenic group was found in the polyMMA obtained. © 1994 John Wiley & Sons, Inc.  相似文献   

20.
Hydrocarbons are emitted into the Earth's atmosphere in very large quantities by human and biogenic activities. Their atmospheric oxidation processes almost exclusively yield RO2 radicals as reactive intermediates whose atmospheric fate is not yet fully unraveled. Herein, we show that gas‐phase reactions of two RO2 radicals produce accretion products composed of the carbon backbone of both reactants. The rates for accretion product formation are very high for RO2 radicals bearing functional groups, competing with those of the corresponding reactions with NO and HO2. This pathway, which has not yet been considered in the modelling of atmospheric processes, can be important, or even dominant, for the fate of RO2 radicals in all areas of the atmosphere. Moreover, the vapor pressure of the formed accretion products can be remarkably low, characterizing them as an effective source for the secondary organic aerosol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号