首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To prepare thermally stable and high‐performance polymeric films, new solvent‐soluble aromatic polyamides with a carbamoyl pendant group, namely poly(4,4′‐diamino‐3′‐carbamoylbenzanilide terephthalamide) (p‐PDCBTA) and poly(4,4′‐diamino‐3′‐carbamoylbenzanilide isophthalamide) (m‐PDCBTA), were synthesized. The polymers were cyclized at around 200 to 350 °C to form quinazolone and benzoxazinone units along the polymer backbone. The decomposition onset temperatures of the cyclized m‐ and p‐PDCBTAs were 457 and 524 °C, respectively, lower than that of poly(p‐phenylene terephthalamide) (566 °C). For the p‐PDCBTA film drawn by 40% and heat‐treated, the tensile strength and Young's modulus were 421 MPa and 16.4 GPa, respectively. The film cyclized at 350 °C showed a storage modulus (E′) of 1 × 1011 dyne/cm2 (10 GPa) over the temperature range of room temperature to 400 °C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 775–780, 2000  相似文献   

2.
Novel methyl-substituted aromatic poly (ether sulfone)s and poly (ether ketone)s were synthesized from combinations of 3,3′,5,5′-tetramethylbipheny-4,4′-diol and 2,2′,3,3′,5,5′-hexamethylbiphenyl-4,4′-diol, and 4,4′-dichlorodiphenyl sulfone and 4,4′-difluorobenzo-phenone by nucleophilic aromatic substitution polycondensation. The polycondensations proceeded quantitatively in a N-methyl-2-pyrrolidone-toluene solvent system in the presence of anhydrous potassium carbonate to afford the polymers with inherent viscosities between 0.86 and 1.55 dL/g. The methyl-substituted poly (ether sulfone)s and poly (ether ketone)s showed good solubility in common organic solvents such as chloroform, tetrahydrofuran, pyridine, m-cresol, and N,N-dimethylacetamide. The tetramethyl- and hexamethyl-substituted aromatic polyethers had higher glass transition temperatures than the corresponding unsubstituted polymers, and did not decompose below 350°C in both air and nitrogen atmospheres. The films of the methyl-substituted poly (ether ketone)s became insoluble in chloroform by the irradiation of ultraviolet light, indicating the occurrence of photochemical crosslinking reactions. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
A series of thermotropic polyesters, derived from 4,4′‐biphenol (BP), 3‐phenyl‐4,4′‐biphenol (MPBP), and 3,3′‐bis(phenyl)‐4,4′‐biphenol (DPBP), 4,4′‐oxybisbenzoic acid (4,4′‐OBBA), and other aromatic dicarboxylic acids as comonomers, were prepared by melt polycondensation and were characterized for their thermotropic liquid‐crystalline (LC) properties with a variety of experimental techniques. The homopolymer of BP with 4,4′‐OBBA and its copolymers with either 50 mol % terephthalic acid or 2,6‐naphthalenedicarboxylic acid had relatively high values of the crystal‐to‐nematic transition (448–460 °C), above which each of them formed a nematic LC phase. In contrast, the homopolymers of MPBP and DPBP had low fusion temperatures and low isotropization temperatures and formed nematic melts above the fusion temperatures. Each of these two polymers also exhibited two glass‐transition temperatures, which were associated with vitrified noncrystalline (amorphous) regions and vitrified LC domains, as obtained directly from melt polycondensation. As expected, they had higher glass‐transition temperatures (176–211 °C) than other LC polyesters and had excellent thermal stability (516–567 °C). The fluorescence properties of the homopolymer of DPBP with 4,4′‐OBBA, which was soluble in common organic solvents such as chloroform and tetrahydrofuran, were also included in this study. For example, it had an absorption spectrum (λmax = 259 and 292 nm), an excitation spectrum (λex = 258 and 292 nm with monitoring at 350 nm), and an emission spectrum (λem = 378 nm with excitation at 330 nm) in chloroform. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 141–155, 2002  相似文献   

4.
Wholly aromatic, thermotropic homopolyesters, derived from 4,4′-biphenol, substituted biphenols, or 1,1′-binaphthyl-4,4′-diol and 3,4′-benzophenone dicarboxylic acid, and two copolyesters, each of which contained 30 mol % of 6-hydroxy-2-naphthoic acid, were prepared by acidolysis polycondensation reactions and characterized for their liquid crystalline properties. The solubility behavior of these polymers has also been investigated. The two homopolymers of phenyl-substituted biphenols with 3,4′-benzophenone dicarboxylic acid were soluble in many common organic solvents. All of the homopolymers had lower Tm/Tf values than those with terephthalic acid, which was attributed to the incorporation of the asymmetric 3,4′-benzophenone dicarboxylate units in a head-to-head and head-to-tail fashion along the polyester chain. Two copolymers had lower Tm values than those of the respective homopolymers, as expected. They formed nematic phases which persisted up to 400°C, except those of phenyl-substituted biphenols with 3,4′-benzophenone dicarboxylic acid. Each of these two polymers also exhibited an accessible Ti transition, and had a broad range of LC phase. They had glass transition temperatures, Tg, in the range of 139-209°C and high thermal stabilities in the temperature range of 465-511°C. © 1995 John Wiley & Sons, Inc.  相似文献   

5.
We have synthesized a novel dianhydride, 2,2′-dichloro-4,4′,5,5′-benzophenone tetracarboxylic dianhydride (DCBTDA). Polyimides were synthesized with DCBTDA or 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA) and several relatively rigid meta- and para- substituted mononuclear diamines. The BTDA based systems were insoluble in dipolar, aprotic solvents whereas the DCBTDA based polymers displayed enhanced solubility in these solvents. The thermal stability of these polyimides was excellent as measured by 5% weight loss decomposition. The Tg's of the polymers were all above 290°C.  相似文献   

6.
Polyamides from 4,4′-dipiperidyl, 1,2-ethylene-, and 1,3-propylene- bridged dipiperidyls were prepared via solution and interfacial polycondensation techniques. In sharp contrast to the polyamides from N,N′-alkyl-substituted alkylene diamines and aromatic diacids, the polyamides from 4,4′-dipiperidyls are high-melting (up to 455°C) and alcohol-insoluble. Tough films were cast from formic acid solutions of the polymers; fiber of good physical properties was prepared from a formic acid solution of the polyterephthalamide of 1,2-di(4-piperidyl)ethane.  相似文献   

7.
A new diimide‐dicarboxylic acid, 2,2′‐dimethyl‐4,4′‐bis(4‐trimellitimidophenoxy)biphenyl (DBTPB), containing a noncoplanar 2,2′‐dimethyl‐4,4′‐biphenylene unit was synthesized by the condensation reaction of 2,2′‐dimethyl‐4,4′‐bis(4‐minophenoxy)biphenyl (DBAPB) with trimellitic anhydride in glacial acetic acid. A series of new polyamide‐imides were prepared by direct polycondensation of DBAPB and various aromatic diamines in N‐methyl‐2‐pyrrolidinone (NMP), using triphenyl phosphite and pyridine as condensing agents. The polymers were produced with high yield and moderate to high inherent viscosities of 0.86–1.33 dL · g−1. Wide‐angle X‐ray diffractograms revealed that the polymers were amorphous. Most of the polymers exhibited good solubility and could be readily dissolved in various solvents such as NMP, N,N‐dimethylacetamide (DMAc), N,N‐dimethylformamide (DMF), dimethyl sulfoxide, pyridine, cyclohexanone, and tetrahydrofuran. These polyamide‐imides had glass‐transition temperatures between 224–302 °C and 10% weight loss temperatures in the range of 501–563 °C in nitrogen atmosphere. The tough polymer films, obtained by casting from DMAc solution, had a tensile strength range of 93–115 MPa and a tensile modulus range of 2.0–2.3 GPa. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 63–70, 2001  相似文献   

8.
Polyesters were made with aromatic diacid chlorides and 4,4,-thiodiphenol. Isophthaloyl chloride and/or terephthaloyl chloride were used as acid chlorides alone or together with 5-cyanoisophthaloyl chloride or [2.2]p-cyclophane-3,9-dicarboxylic acid chloride. The latter components were incorporated in order to make the polymers useful for crosslinking. A polyether could be obtained by polycondensation of 2,4-dichloro-benzonitrile and 4,4′-thiodiphenol. The polycondensations were run in nitrobenzene as solvent.  相似文献   

9.
A series of poly(arylene ether)s were successfully prepared by aromatic, nucleophilic substitution reactions with various perfluoroalkyl‐activated bisfluoromonomers with 4,4′‐bishydroxybiphenyl and 4,4′‐bishydroxyterphenyl. 4,4′‐Bishydroxyterphenyl was synthesized through the Grignard coupling reaction of magnesium salt of 4‐bromoanisole with dibromobenzene followed by demethylation with pyridine–hydrochloride. The products obtained by the displacement of fluorine atoms exhibited good inherent viscosity, up to 0.77 dL/g, and number‐average molecular weights up to 69,300. These poly(arylene ether)s showed very good thermal stability, up to 548 °C for 5% weight loss according to thermogravimetric analysis under synthetic air, and high glass‐transition temperatures, up to 259 °C according to differential scanning calorimetry, depending on the exact repeat unit structure. These polymers were soluble in a wide range of organic solvents, such as N‐methylpyrrolidone, dimethylformamide, tetrahydrofuran, toluene, and CHCl3, and were insoluble in dimethyl sulfoxide and acetone. Thin films of these poly(arylene ether)s showed good transparency and exhibited tensile strengths up to 132 MPa, moduli up to 3.34 GPa, and elongations at break up to 84%, depending on their exact repeating unit structures. These values are comparable to those of high‐performance thermoplastic materials such as poly(ether ether ketone) (PEEK) and Ultem poly(ether imide) (PEI). These poly(arylene ether)s exhibited low dielectric constants. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 55–69, 2002  相似文献   

10.
A series of fully aromatic, thermotropic polyesters, derived from 3-phenyl-4,4′-biphenol (MPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various other comonomers was prepared by the melt polycondensation method and characterized for their thermotropic liquid crystalline behavior by a variety of experimental techniques. The homopolymer of MPBP with 4,4′-BDA had a fusion temperature (Tf) at 240°C, exhibited a nematic liquid crystalline phase, and had a narrow liquid crystalline range of 60°C. All of the copolyesters of MPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA) or 50 mol % terephthalic acid (TA), 2,6-naphthale-nedicarboxylic acid (2,6-NDA) and low Tf values in the range of 210–230°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 320–420°C, respectively. As expected, each of them had a broader range of liquid crystalline phase than the homopolymer. They had a “frozen” nematic, glassy order as determined with the wide-angle X-ray diffraction (WAXD) studies. The morphology of each of the “as-made” polyesters had a fibrous structure as determined with the scanning electron microscopy (SEM), which arises because of the liquid crystalline domains. Moreover, they had higher glass transition temperatures (Tg) in the range of 167–190°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 500–533°C, respectively. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
A series of wholly aromatic, thermotropic polyesters, derived from 3,3′-bis(phenyl)-4,4′-biphenol (DPBP), nonlinear 4,4′-benzophenone dicarboxylic acid (4,4′-BDA), and various linear comonomers, were prepared by the melt polycondensation reaction and characterized for their thermotropic properties by a variety of experimental techniques. The homopolymer of DPBP with 4,4′-BDA had a fusion temperature (Tf) at 265°C, exhibited a nematic phase, and had a liquid crystalline range of 105°C. All of the copolyesters of DPBP with 4,4′-BDA and either 30 mol % 4-hydroxybenzoic acid (HBA), 6-hydroxy-2-naphthoic acid (HNA), or 50 mol % terephthalic acid (TA), 2,6-naphthalenedicarboxylic acid (2,6-NDA) had low Tf values in the range of 220–285°C, exhibited a nematic phase, and had accessible isotropization transitions (Ti) in the range of 270–420°C, respectively. Their accessible Ti values would enable one to observe a biphase structure. Each of the copolymers with HBA or HNA had a much broader range of liquid crystalline phase. In contrast, each of the copolymers with TA or 2,6-NDA had a relatively narrow range of liquid crystalline phase. Each of these polyesters had a glassy, nematic morphology that was confirmed with the DSC, PLM, WAXD, and SEM studies. As expected, they had higher glass transition temperatures (Tg) in the range of 161–217°C than those of other liquid crystalline polyesters, and excellent thermal stabilities (Td) in the range of 494–517°C, respectively. Despite their noncrystallinity, they were not soluble in common organic solvents with the exception that the homopolymer and its copolymer with TA had limited solubility in CHCl3. However, they were soluble in the usual mixture of p-chlorophenol/1,1,2,2-tetrachloroethane (60/40 by weight) with the exception of the copolymer with 2,6-NDA. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 769–785, 1997  相似文献   

12.
A novel aromatic diamine monomer, 3,3′‐diisopropyl‐4,4′‐diaminodiphenyl‐3′′,4′′‐difluorophenylmethane (PAFM), was successfully synthesized by coupling of 2‐isopropylaniline and 3,4‐difluorobenzaldehyde. The aromatic diamine was adopted to synthesize a series of fluorinated polyimides by polycondensation with various dianhydrides: pyromellitic dianhydride (PMDA), 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), 4,4′‐oxydiphthalic anhydride (ODPA) and 3,3′,4,4′‐benzophenone tetracarboxylic dianhydride (BTDA) via the conventional one‐step method. These polyimides presented excellent solubility in common organic solvents, such as N,N‐dimethylformamide (DMF), N,N‐dimethyl acetamide (DMAc), dimethyl sulfoxide (DMSO), N‐methyl‐2‐pyrrolidone (NMP), chloroform (CHCl3), tetrahydrofuran (THF) and so on. The glass transition temperatures (Tg) of fluorinated polyimides were in the range of 260–306°C and the temperature at 10% weight loss in the range of 474–502°C. Their films showed the cut‐off wavelengths of 330–361 nm and higher than 80% transparency in a wavelength range of 385–463 nm. Moreover, polymer films exhibited low dielectric properties in the range of 2.76–2.96 at 1 MHz, as well as prominent mechanical properties with tensile strengths of 66.7–97.4 MPa, a tensile modulus of 1.7–2.1 GPa and elongation at break of 7.2%–12.9%. The polymer films also showed outstanding hydrophobicity with the contact angle in the range of 91.2°–97.9°.  相似文献   

13.
The respectively yellow and red coordination polymers [(CuCN)2(μ‐4,4′‐bpy)] ( 1 ) and [{CuCN(μ‐4,4′‐bpy)} · 2(4,4′‐bpy)] ( 2 ) (4,4′‐bpy = 4,4′‐bipyridine) may be prepared by self‐assembly of CuCN and 4,4′‐bpy at the appropriate molar ratio in acetonitrile solution at 100 °C. In 1 infinite CuCN chains are linked by 4,4′‐bpy ligands into lamellar polymers which exhibit short Cu…C(N) contacts of 2.41(1) Å between one of the crystallographically independent copper atoms and cyanide carbon atoms of a neighbouring corrugated sheet. At a molar ratio of CuCN : 4,4′‐bpy below 2 : 3, the heteroaromatic ligands also adopt a structure‐directing role to afford 3 , in which [(CuCN)2(μ‐4,4′‐bpy)] sheets are now joined by additional bridging 4,4′‐bpy spacer molecules to provide a three‐dimensional framework, whose nanometer‐sized channels (12.76 × 13.12 Å) accomodate two noncoordinated 4,4′‐bpy guest molecules. A DTA/TGA trace demonstrates that these can be removed in two steps at 150 and 176 °C.  相似文献   

14.
Copoly(4,4′-oxanilideterephthalamide—4,4′-phenyleneterephthalamide) (A-202/PPD) was synthesized by reaction of 4,4′-diaminooxanilide, p-phenylenediamine, and terephthaloyl chloride in organic solvents. Copolymer inherent viscosities in H2SO4 as high as 10.3 were obtained. Isotropic copolymer solutions (4%—5% concentration) of A-202/40%–80% PPD were spun to fibers with tenacity/elongation/modulus at 1% extension in the 13–14 gpd/1.5%–2%/700–1000 gpd range. Oxamide and amide stabilities in 98–100% H2SO4 and 20% oleum were compared. Poly(4,4′-oxanilideterephthalamide) (A-202), A-202/PPD copolymers, and poly(4,4′-phenyleneterephthalamide) (PPT) were unstable in 20% oleum, but all proved relatively stable in 100% H2SO4. However, the oxamide linkage proved less stable than the amide linkage in 98% H2SO4. A-202 and A-202/PPD copolymers formed stable anisotropic spinning solutions in 1% oleum at 10–20% concentrations. Dynamic mechanical analyses (Vibron) showed no glass transition temperature (Tg) below 200°C. Dilatometric measurement of A-202/50% PPD revealed a Tg at 257°C. Differential thermal analyses of A-202/40–80% PPD exhibited endotherms at 470–480°C. Thermogravimetric analyses showed no significant weight loss below 400°C.  相似文献   

15.
Two new bis(benzylidenephthalide)monomers were synthesized by melt condensation of phenylacetic acid with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA). A mixture of three isomers for each monomer was obtained and polymerized with diamines to produce new polyimidines. Polymerizations were conducted with m-xylylenediamine (MXDA) or 4,4′-oxydianiline (ODA) in quantitative yields for the undehydrated intermediate. Inherent viscosities ranged from 0.17 to 0.35 dL/g in N,N-dimethylformamide (DMF) or N-methyl-2-pyrrolidone (NMP). These intermediate poly(hydroxylactams) were thermally dehydrated to polyimidines which exhibited a 10% weight loss, as high as 546°C in nitrogen. Inherent viscosities of the dehydrated (cured) polyimidines ranged from 0.14 to 0.20 dL/g in NMP. Brittle films could be cast from NMP solutions.  相似文献   

16.
4,4′-Binaphthyl-1,1′,8,8′-tetracarboxylic dianhydride was synthesized from 4-chloro-1,8-naphthalic anhydride and polymerized with aromatic and pliphatic diamines in m-cresol or N-methyl-2-pyrrolidinone (NMP). The polyimides, except for two derived from p-phenylenediamine and hydrazine, are soluble in 1,1,2,2-tetrachloroethane and NMP. Their intrinsic viscosities ranged from 0.36 to 2.20 dL/g. The polymers showed excellent thermal and thermooxidative stabilities and displayed weak glass transition temperatures. Young's moduli of some polymer films were in the range of 2.5 and 5.4 GPa at 30°C. The aliphatic polyimides exhibited a stronger fluorescence than the aromatic polyimides. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
Hydroxyl-containing polyamides have been prepared by the ring-opening polyaddition of 4,4′-oxydi-p-phenylenebis(4-butanolide) with aliphatic diamines in alcoholic solvents at 65–80°C. These polymers having inherent viscosities ranging from 0.1 to 0.5 were soluble in a variety of solvents including dimethylformamide, formic acid, and m-cresol. Transparent and flexible films cast from these solutions were highly hygroscopic. All the polymers had low softing temperatures in the range of 115–130°C, and began to decompose at around 250°C, both in air and under nitrogen.  相似文献   

18.
4,4′-(1,4-Phenylenedioxy)dibenzoic acid (3), 4,4′-(2,5-tolylenedioxy)dibenzoic acid (Me-3), and 4,4′-(2,5-biphenylenedioxy)dibenzoic acid (Ph-3) were prepared by the nucleophilic substitution reaction of p-fluorobenzonitrile with hydroquinone, methylhydroquinone, and phenylhydroquinone, respectively, followed by alkaline hydrolysis. Several aromatic polyamides having inherent viscosities of 0.66–1.34 dL/g were directly prepared by a Yamazaki phosphorylation polyamidation technique from dicarboxylic acids 3, Me-3, and Ph-3, respectively, with aromatic diamines using triphenyl phosphite and pyridine as condensing agents. The solubility of methyl- or phenyl-substituted polyamides was remarkably enhanced when compared to that of nonsubstituted analogues. Most of the substituted polyamides revealed an amorphous nature and were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), N,N-dimethylformamide, dimethyl sulfoxide, and m-cresol. Transparent, flexible, and tough films of these polymers could be cast from the DMAc or NMP solutions. These films had tensile strength of 60–100 MPa, elongation to break of 6–11%, and tensile modulus of 1.68–2.25 GPa. The glass transition temperatures (Tg) of most polyamides could be determined by differential scanning calorimetry (DSC) and were in the range of 200–232°C. Thermogravimetric analyses established that these polymers were fairly stable up to 450°C, and the 10% weight loss temperatures were recorded in the range of 458–535°C in nitrogen and 468–528°C in air atmosphere. In general, the phenyl-substituted polyamides exhibited relatively higher Tg, thermal stability, and solubility. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The synthesis and the characterization of a set of polymers obtained by polycondensation of n-alkoxyterephthalic acid (n = 1, 3, 5, 7) and 4,4′-dihydroxybiphenyl are reported. The n-alkoxy insertion promotes the processability of the material by lowering the melting temperature. All polymers show the nematic phase at about 300°C, almost independently of the length of lateral substituent. The isotropization is not observed up to 450°C, where thermal decomposition occurs. The temperature of glass transition decreases with increasing n, ranging from 170°C (n = 5) to 220°C (n = 1). © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 263–267, 1998  相似文献   

20.
A novel aromatic dicarboxylic acid monomer, 4,4′-(2,3-naphthalenedioxy)-dibenzoic acid ( 3 ), was prepared by the fluorodisplacement reaction of p-fluorobenzonitrile with 2,3-dihydroxynaphthalene in N,N-dimethylformamide (DMF) in the presence of potassium carbonate followed by alkaline hydrolysis of the intermediate dinitrile. A series of novel aromatic polyamides containing ortho-linked aromatic units in the main chain were synthesized by the direct polycondensation of diacid 3 and a variety of aromatic diamines using triphenyl phosphite and pyridine as condensing agents in the N-methyl-2-pyrrolidone (NMP) solution containing dissolved calcium chloride. The resulting polyamides had inherent viscosities higher than 0.74 and up to 2.10 dL/g. All of these polyamides were soluble in polar solvents, such as NMP, DMF, N,N-dimethylacetamide (DMAc), and dimethyl sulfoxide. Transparent, flexible, and tough films could be cast from their DMAc or NMP solutions. The solvent-cast films had high tensile strengths and moduli. Extensions to break were relatively low, except for the polymers derived from 2,2-bis[4-(4-aminophenoxy)phenyl]hexafluoropropane and 3,4′-oxydianiline, which had elongations of 82 and 62%, respectively. Except for the polyamide based on p-phenylenediamine, all the other polyamides were amorphous in nature. All the polymers are thermally stable to temperatures in excess of 450°C in either air or nitrogen atmosphere. The polymers exhibited glass transition temperatures ranging from 183 to 260°C and decomposition temperatures (10% weight loss) ranging from 462–523°C in air and 468–530°C in nitrogen. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3385–3391, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号