首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Crystal Structure of Tb2Se3 Single crystals of Tb2Se3 could be prepared by chemical transport reaction with AlCl3. By starting from TbSe1.9 and terbium metal black needles of Tb2Se3 in the U2S3 type structure with the space group Pnma and a = 1113,0(1) pm, b = 402,4(1) pm and c = 1095,1(3) pm were obtained.  相似文献   

2.
Synthesis and Crystal Structure of Ln2SeSiO4 (Ln = Sm, Dy, Ho) and Sm2TeSiO4 Single crystals of Ln2SeSiO4 (Ln = Sm, Dy, Ho) could be prepared by the reaction of lanthanide metal, selenium and iodine in the ratio 1 : 1 : 2.5 and subsequent reaction with quartz glass powder. Black crystals of Sm2TeSiO4 have been obtained in chemical transport experiments of SmTe2 with iodine in evacuated quartz glass ampoules as by‐products. All chalcogenide silicates crystallize orthorhombically with the space group Pbcm (Z = 4) and the lattice constants: Sm2SeSiO4: a = 612.6(1) pm, b = 709.0(1) pm, c = 1094.0(2) pm; Dy2SeSiO4: a = 603.6(1) pm, b = 696.4(1) pm, c = 1081.2(2) pm; Ho2SeSiO4: a = 601.0(1) pm, b = 693.6(1) pm, c = 1078.6(2) pm; Sm2TeSiO4: a = 623.82(8) pm, b = 713.06(7) pm, c = 1112.26(11) pm. The crystal structure is built up of alternating Ln(Se/Te) and LnSiO4 sheets parallel (001).  相似文献   

3.
Contributions to the Crystal Chemistry of Uranium Tellurides. I. The Crystal Structure of α-Uranium Tritelluride Single crystals of the title compound up to a size of 8 mm were available via chemical transport reactions with TeBr4 as transporting agent starting from the elements. The analysis by atomic emission spectrometry gave UTe3.0(1). By X-ray single crystal structure analysis we found that UTe3 crystallizes monoclinic (space group P 21/m, Z = 2) with a = 609.7(1) pm, b = 422.06(4) pm, c = 1031.2(1) pm and β = 97.87(1)º in the ZrSe3-structure type. The layer structure is built up by bicapped trigonal prisms.  相似文献   

4.
Pale yellow, needle‐shaped single crystals of Sm2[SeO3]3 were obtained by heating stoichiometric mixtures of Sm2O3 and SeO2 (molar ratio: 1:3) along with substantial amounts of CsCl as fluxing agent in evacuated sealed silica tubes at 830 °C for one week. According to X‐ray single‐crystal diffraction data, Sm2[SeO3]3 crystallizes triclinic (space group: ) with two formula units per unit cell of the dimensions a = 698.62(7), b = 789.71(8), c = 910.34(9) pm, α = 96.693(5), β = 104.639(5), γ = 115.867(5)°. Its crystal structure contains two crystallographically distinct Sm3+ cations in eight‐ and ninefold coordination with oxygen atoms arranged as distorted uncapped or capped square antiprisms (d(Sm3+?O2?) = 232?271 pm). These [(Sm1)O8] and [(Sm2)O9] polyhedra share opposite edges and faces to form zigzag chains along [100] with discrete pyramidal [SeO3]2? anions bridging units. Further linkage by [SeO3]2? anions in [010] direction leads to a three‐dimensional network, which exhibits almost rectangular channels along [111]. These tunnels offer width enough to incorporate the free non‐bonding electron pairs (?lone pairs”?) at the Se4+ cations, since all nine different Ψ1‐tetrahedral [SeO3]2? groups (d(Se4+?O2?) = 165?173 pm, ?(O–Se–O) = 94 – 108°) exhibit a pronounced stereochemical ?lone‐pair”? activity. For not being isotypic with neither triclinic Er2[SeO3]3 (CN(Er3+) = 7 and 8) nor the remainder rare‐earth metal(III) oxoselenates(IV) of the composition M2[SeO3]3 (≡ M2Se3O9; M = Sc, Y, La, Ce – Lu), Sm2[SeO3]3 claims a unique crystal structure among them.  相似文献   

5.
Pale yellow single crystals of Sm2(SeO3)(Se2O5)2 (monoclinic, P21/c, Z = 4, a = 1003.6(2), b = 1022.5(2), c = 1287.3(2) pm, β = 112.3(2)°) were obtained from the reaction of Sm2O3 and SeO2 at 350 °C in a sealed glass ampoule. In the crystal structure both Se2O52? and SeO32? groups connect the Sm3+ ions into layers. Between the layers the lone electron pairs of the anions are located.  相似文献   

6.
Ruby‐red, bead‐shaped single crystals of C‐type La2Se3 (a = 905.21(6) pm), Pr2Se3 (a = 891.17(6) pm), and Gd2Se3 (a = 872.56(5) pm) are obtained by oxidation of the respective rare‐earth metal (M = La, Pr and Gd) with selenium (molar ratio 2 : 3) in evacuated silica tubes at 750 °C in the presence of fluxing CsCl within seven days. Their crystal structure belongs to a cation‐deficient Th3P4‐type variant (cubic, I 4 3d) according to M2.6670.333Se4 (Z = 4) or M2Se3 (Z = 5.333) offering coordination numbers of eight (Se2– arranged as trigonal dodecahedra) to the M3+ cations. In spite of the high Cs+ activity in molten CsCl, no cesium incorporation into the M5.3330.667Se8‐frame structure (e. g. as CsM5Se8 with Z = 2) could be achieved, judged from both results of electron beam X‐ray microanalyses and refined occupation factors of the metal position very close to x = 8/9 for M3xSe4.  相似文献   

7.
Preparation and Crystal Structure of the Hexaselenodiphosphates(IV) of Antimony and Bismuth Sb4(P2Se6)3 and Bi4(P2Se6)3 are synthesized from the elements via chemical transport reactions with iodine. The isotypic compounds crystallize in the monoclinic space group P21/n (No. 14) with lattice parameters a = 2 077.7(4) pm, b = 749.35(5) pm, c = 949.49(8) pm, β = 91.25(1)° for Sb4(P2Se6)3 and a = 2 086.9(3) pm, b = 747.45(6) pm, c = 959.23(6) pm, β = 91.73(1)° for Bi4(P2Se6)3, respectively. This new structure type is closely related to the structure of Pb2P2Se6 showing an ordered cation distribution combined with a reorientation of the ethane like [P2Se6]4? units. From the interatomic distances in the coordination spheres a smaller lone pair effect of BiIII compared to SbIII may be deduced. For both compounds UV/VIS spectra and temperature dependence of the electrical resistivity are reported.  相似文献   

8.
On Sesquiselenides of the Lanthanoids: Single Crystals of C‐type Ce2Se3, U‐type Gd2Se3, and Z‐type Lu2Se3 Single crystals of lanthanoid sesquiselenides (M2Se3; here: M = Ce, Gd, Lu) are accessible through conversion of the elements (lanthanoid and selenium) in molar ratios of 2:3 within seven days at 850 °C from evacuated silica ampoules if equimolar amounts of NaCl serve as a flux. In the case of Ce2Se3 (a = 897.74(6) pm) und Gd2Se3 (a = 872.56(5) pm) the cubic C‐type (I4¯3d, Z = 5.333) forms as dark red beads, whereas the orthorhombic Z‐type (Fddd, Z = 16) emerges for Lu2Se3 (a = 1125.1(1), b = 798.06(8), c = 2387.7(2) pm) as orange‐yellow bricks. Upon oxidation of monochloride hydrides (MClHx or AyMClHx; M = Ce, Gd, Lu; x = 1; A = Li, Na; y = 0.5) with selenium in arc‐welded tantalum ampoules the same main products appear with C‐Ce2Se3 and Z‐Lu2Se3, even with a surplus of NaCl or LiCl as fluxing agent. In the case of Gd2Se3, however, black‐red needles of the orthorhombic U‐type (Pnma, Z = 4; a = 1118.2(1), b = 403.48(4); c = 1097.1(1) pm) are yielded instead of C‐Gd2Se3. C‐Ce2Se3 crystallizes in a cation‐deficient Th3P4‐type structure (Ce2S3 type) according to Ce2.6670.333Se4 (Z = 4) or with Z = 5.333 for the empirical formula Ce2Se3. Here, Ce3+ is coordinated by eight Se2— anions trigon‐dodecahedrally. In U‐Gd2Se3 (U2S3 type) two crystallographically independent Gd3+ cations with coordination numbers of 7 (Gd1) and 7+1 (Gd2), respectively, are present, exhibiting mono‐ or bicapped trigonal prisms as coordination polyhedra. The crystal structure of Z‐Lu2Se3 (Sc2S3 type) shows two different Lu3+ cations as well, which now both reside in octahedral coordination of six Se2— anions each.  相似文献   

9.
The reaction of iridium powder with an excess of selenium and SeBr4 yielded lustrous, vermillion crystals of the mononuclear iridium complex [IrBr3(SeBr2)3]. The transition metal is coordinated octahedrally by three SeBr2 and three bromide ligands with facial or meridional configuration. Three different modifications were obtained under similar conditions: a‐fac‐IrBr3(SeBr2)3, space group P$\bar{1}$ , with a = 789.4(1) pm, b = 830.4(1) pm, c = 1334.4(1) pm, α = 81.634(5)°, β = 84.948(5)°, γ = 67.616(4)°; m‐fac‐IrBr3(SeBr2)3, space group P21/n, with a = 1205.3(1) pm, b = 962.4(1) pm, c = 1383.9(1) pm, β = 91.114(3)°; mer‐IrBr3(SeBr2)3, space group P21/n with a = 859.7(1) pm, b = 1284.3(1) pm, c = 1437.5(1) pm, β = 94.427(3)°. A lower bromine content in the starting composition resulted in shiny, deep‐red crystals of [Se9(IrBr3)2]. X‐ray diffraction on a single‐crystal revealed a tetragonal lattice (space group I41/a) with a = 1245.4(1) pm and c = 2486.8(1) pm at 296(1) K. In the [Se9(IrBr3)2] complex, a crown‐shaped uncharged Se9 ring coordinates two iridium(III) cations as a bridging bis‐tridentate ligand. Three terminal bromide ions complete the distorted octahedral coordination of each transition metal atom.  相似文献   

10.
Pr30Ti24I8O25Se58: A Highly Symmetric Structure with Isolated [Ti6(O)Se8]‐Cluster Units Black crystals of Pr30Ti24I8O25Se58 have been prepared by the reaction of Pr2Se3, Pr2O2Se, TiSe2–x, and I2 at 900 °C. Its crystal structure can be described as a variation of the NaCl structure type (space group Fm 3 m, a = 2319.91(15) pm, Z = 4). The compound contains the first example of a [Ti6(O)Se8] cluster. These clusters form a cubic close packing, where the octahedral and tetrahedral holes are occupied by “superoctahedral” and “supertetrahedral” building units, respectively.  相似文献   

11.
Quaternary Cesium Copper(I) Lanthanoid(III) Selenides of the Type CsCu3M2Se5 (M = Sm, Gd — Lu) By oxidation of mixtures of copper and lanthanoid metal with elemental selenium in molar ratios of 1 : 1 : 2 and in addition of CsCl quaternary cesium copper(I) lanthanoid(III) selenides with the formula CsCu3M2Se5 (M = Sm, Gd — Lu) were obtained at 750 °C within a week from torch‐sealed evacuated silica tubes. An excess of CsCl as flux helps to crystallize golden yellow or red, needle‐shaped, water‐resistant single crystals. The crystal structure of CsCu3M2Se5 (M = Sm, Gd — Lu) (orthorhombic, Cmcm, Z = 4; e. g. CsCu3Sm2Se5: a = 417.84(3), b = 1470.91(8), c = 1764.78(9) pm and CsCu3Lu2Se5: a = 407.63(3), b = 1464.86(8), c = 1707.21(9) pm, respectively) contains [MSe6]9— octahedra which share edges to form double chains running along [100]. Those are further connected by vertices to generate a two‐dimensional layer parallel to (010). By edge‐ and vertex‐linking of [CuSe4]7— tetrahedra two crystallographically different Cu+ cations build up two‐dimensional puckered layers parallel to (010) as well. These sheet‐like structure interconnects the equation/tex2gif-stack-3.gif{[M2Se5]4—} layers to create a three‐dimensional network according to equation/tex2gif-stack-4.gif{[Cu3M2Se5]}. Thus empty channels along [100] form, apt to take up the Cs+ cations. These are surrounded by eight plus one Se2— anions in the shape of (2+1)‐fold capped trigonal prisms with Cs—Se distances between 348 and 368 pm (8×) and 437 (for M = Sm) or 440 pm (for M = Lu), respectively, for the ninth ligand.  相似文献   

12.
The Crystal Structures of ErSeI and NaErSe2 It is reported about attempts to synthesize lanthanoide selenidehalides of the formula LnSeX (X ? Cl, Br, I) exemplary for Ln ? Er. The relative stabilities of these compounds are discussed. X-ray crystal structure analysis revealed for the compounds ErSeBr and ErSeI the FeOCl-structure type (space group Pmmn, Z = 2, a = 406.3(5) pm, b = 559.2(6) pm, and c = 795(1) pm, and a = 418.26(6) pm, b = 558.4(1) pm, and c = 889.0(2) pm, respectively). A corresponding chloride was not found within the scope of this investigation. From the educts Er2Se3 and ErCl3 in the presence of NaCl as flux in Nb-ampoules the compound NaErSe2 was formed instead which crystallizes in an α-NaFeO2-type structure (space group R3 m, Z = 3, a = 408.41(2) pm and c = 2067.4(2) pm).  相似文献   

13.
Synthesis and Crystal Structure of [Se3N2Cl]+GaCl4? [Se3N2Cl]+GaCl4? has been prepared by the reduction of [Se2NCl2]+GaC14? with SbPh3 in CH2Cl2 solution, forming red crystals, which were characterized by an X-ray structure determination. Space group P21/n, Z = 4, 1640 observed unique reflections, R = 0.050. Lattice dimensions at ? 80 °C: a = 929.4(1), b= 1078.8(1), c = 1135.7(1) pm, β = 92.026(9)°. The cations from nearly planar Se3N2 five membered rings with Se? N bond lengths from 170 to 176pm and a Se? Se bond of 242.2 pm. One of the selenium atoms is bonded to the chlorine atom.  相似文献   

14.
The phase diagram Cu2SeAs2Se3 was investigated by thermal and X-ray methods. Cu2Se has a limited solubility for As2Se3 (5 mole% at 769 K). The stoichiometric compound Cu3AsSe3 exists between 696 and 769 K. Cu4As2Se5, a phase at 66.6 mole% Cu2Se, decomposes peritectically at 746 K. The narrow homogeneity range (4 mole% at 683 K) extends far into the ternary space. CuAsSe2 also decomposes peritectically at 683 K. A degenerated eutectic between CuAsSe2 and As2Se3 was found at 641 K. Single crystals of Cu4As2Se5 were grown in a salt melt. A metastable modification of the high-temperature phase Cu3AsSe3 can be obtained by quenching. Cu4As2Se5 (space group R3, lattice constants a = 1404.0(1) pm, c = 960.2(1) pm), Cu6As4Se9, obtained by Cambi and Elli, and Cu7As6Se13 of Takeuchi and Horiuchi are different versions of a sphalerite-type compound with a broad homogeneity range in the system CuAsSe. CuAsSe2 is possibly monoclinic with lattice parameters of a = 946.5(1) pm, b = 1229.3(1) pm, c = 511.7(1) pm, and β = 98.546(4)°. The enthalpy of mixing of Cu2Se and As2Se3 in the liquid state is endothermic.  相似文献   

15.
Synthesis and Crystal Structure of a New Modification of Tetraselenium Tetranitride, Se4N4 β-Se4N4 has been prepared by the reaction of selenium dioxide with the phosphane imine Me3SiNPMe3 in acetonitrile, forming red-brown crystal needles. The crystal structure analysis shows a new modification, the IR spectrum of which differs only slightly from the known α-form of Se4N4 (space group C2/c). β-Se4N4: Space group P21/n, Z = 4, structure solution with 1 667 observed unique reflections, R = 0.054. Lattice dimensions at ?50°C: a = 881.8(2), b = 738.7(2), c = 899.6(2) pm, β = 93.58(1)°. Just as the α-form β-Se4N4 forms cage molecules without symmetry and intramolecular Se? Se contacts of 273.2 and 274.0 pm. There are strong Se…?N-interactions between the Se4N4 molecules.  相似文献   

16.
Polyselenides with Long-chain Tetraalkylammonium Ions. Crystal Structure of Trimethyltetradecyl-ammonium Hexaselenide Na2Se2 and Na2Se react with various tetraalkylammonium halides in ethanol and in presence of grey selenium and catalytic quantities of iodine forming different polyselenides Sen2? (n = 3, 5—9). In the solutions equilibria of polyselenides seem to occur; cooling of saturated solutions causes crystallization of polyselenides with a composition depending on the cation. Tri- and pentaselenide are dark green. The higher members form black crystals, all compounds are sensitive to oxygen. The i.r. spectra are reported. [(CH3)3N(CH2)13CH3]2Se6 is characterized by a crystallographic structure determination with X-ray data: space group P21212, Z = 4, a = 5043, b = 734.2, c = 600.3 pm (986 observed independent reflexions. R = 0.072). The compound consists of trimethyl tetradecylammonium ions and angular Se62? chains of symmetry C2 with Se? Se bond lengths of 227 and 235 pm.  相似文献   

17.
Ternary Halides of the A3MX6 Type. III [1, 2]. Synthesis, Structures, and Ionic Conductivity of the Halides Na3MX6 (X = Cl, Br) The bromides Na3MBr6 crystallize with the stuffed LiSbF6-type structure (type I; M = Sm? Gd) or with the structure of the mineral cryolite (type II; M = Gd? Lu). The structure types were refined from single crystal X-ray data (Na3SmBr6: trigonal, space group R3 , a = 740.8(2) pm, c = 1 998.9(8) pm, Z = 3; Na3YBr6: monoclinic, space group P21/n, a = 721.3(4) pm, b = 769.9(2) pm, c = 1 074.8(4) pm, β = 90.60(4)°, Z = 2). Reversible phase transitions from one structure to the other occur. The phase transition temperatures were determined for the bromides as well as for the chlorides Na3MCl6 (M = Eu? Lu). The refinement of both structures for one compound was possible for Na3GdBr6 (I: trigonal, space group R3 , a = 737.1(5) pm, c = 1 887(2) pm, Z = 3; II: monoclinic, space group P21/n, a = 725.2(1) pm, b = 774.1(3) pm, c = 1 080.1(3) pm, β = 90.76(3)°, Z = 2). All compounds exhibit ionic conductivity of the sodium ions which decreases with the change from type I to type II. The conductivity of the bromides is always higher when compared with the respective chlorides.  相似文献   

18.
Preparation and Crystal Structure of SnTl4Se3 with a Note on TlSe We describe the preparation and crystal structure of SnTl4Se3. It crystallizes as a low symmetric distorted derivative with the In5Bi3 type of structure, which itself should be considered as a subfamily of the Cr5B3 type of structure: a = 852.2(2) pm, c = 1 272.2(6) pm, c/a = 1.49, Z = 4. Short Sn? Se distances of 311 pm, and 326 pm, respectively, are obtained in [SnSe2/2] chains running along [001]. Furthermore, short Tl? Se distances are found in quasimolecular bent moieties Tl2Se: 300 pm, 313 pm, and 347 pm, respectively. SnTl4Se3 is a semiconductor. The conductivity of some closely related phases are also reported. Finally, the structure of the well known compound TlSe has been refined for the first time, in order to get some more information about Tl1+? Se distances for square-antiprismatic coordinated Tl1+ ions.  相似文献   

19.
[Ga(en)3][Ga3Se7(en)] · H2O: A Gallium Chalcogenide with Chains of [Ga3Se6Se2/2(en)]3– Bicycles The new selenidogallate [Ga(en)3][Ga3Se7(en)] · H2O ( I ) was produced from a ethylendiamine suspension of Ga and Se at 130 °C. I crystallizes in the orthorhombic space group Pna21 with unit constants a = 1347.9(3) pm, b = 961.6(1) pm, c = 1967.6(4) pm and Z = 4. The crystal structure contains an anion so far not observed in gallium chalcogenides. It is built from [Ga3Se6Se2/2(en)]3– bicycles of three GaIIIL4 tetrahedra (L = en, Se) connected via selenium corners to linear chains. The cations, GaIII ions coordinated by three ethylendiamine in a distorted octahedral geometry are positioned in the holes of the hexagonal rod packing of these chains.  相似文献   

20.
Single crystals of Sm4OCl6 and KSm2Cl5 have been obtained by metallothermic reductions of SmCl3 with lithium (in the presence of Sm2O3 or SmOCl) and potassium, respectively, at elevated temperatures in sealed tantalum containers. Sm4OCl6 (hexagonal, P63mc, Z = 2, a = 946.59(4), c = 717.88(4) pm) and KSm2Cl5 (monoclinic, P21/c, Z = 4, a = 888.06(6), b = 784.81(5), c = 1262.77(8) pm, ß = 90.085(6)°) are true divalent samarium compounds, Sm4OCl6 with remarkably short Sm2+–O2? distances (236.0, 237.6 (3x) pm) within the [Sm4O] tetrahedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号