首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
分散聚合制备粒度均匀的聚甲基丙烯酸环氧丙酯微球   总被引:13,自引:0,他引:13  
文中描述了粒度均匀的聚甲基丙烯酸环氧丙酯微球的制备,所采用的是分散聚合方法,系统地研究了溶剂体系、单体浓度、引发剂类型与浓度、稳定剂用量、反应温度等各种聚合参数,对聚合产物粒度及其分散性的影响.在优化反应条件的基础上,制备出了微米级(1~8μm)粒度均匀性基本呈现单分散的聚合物微球.  相似文献   

2.
The dispersion copolymerization of styrene and butyl methacrylate in ethanol-water medium to afford micrometer-size monodisperse beads has been investigated. Hydroxypropyl cel-lulose, poly (acrylic acid), and poly (vinylpyrrolidone) have been used as steric stabilizers, benzoyl peroxide and azobisisobutyronitrile as initiators. A novel steric stabilizing system consisting of a mixture of poly (acrylic acid) and hydroxypropyl cellulose has also been shown to lead to monodisperse beads for which the surface charge can be controlled by the relative ratio of steric stabilizers. The effect of several variables, such as the solvency of the medium, the concentration of co-monomers, the reaction temperature, and the type of steric stabilizer and initiator used on the bead size and size distribution are discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Polystyrene microspheres have been synthesized by the reversible addition-fragmentation chain transfer (RAFT) mediated dispersion polymerization in an alcoholic media in the presence of poly(N-vinylpyrrolidone) as stabilizer and 2,2′-azobisisobutyronitrile as a conventional radical initiator. In order to obtain monodisperse polystyrene particles with controlled architecture, the post–addition of RAFT agent was employed to replace the weak point from the pre-addition of RAFT. The feature of preaddition and postaddition of RAFT agent was studied on the polymerization kinetics, particle size and its distribution and on the particle stability. The living polymerization behavior as well as the particle stability was observed only in the postaddition of RAFT. The effects of different concentration on the postaddition of RAFT agent were investigated in terms of molecular weight, molecular weight distribution, particle size and its distribution. The final polydispersity index (PDI) value, particle size and the stability of the dispersion system were found to be greatly influenced by the RAFT agent. This result showed that the postaddition of RAFT agent in the dispersion polymerization not only controls the molecular weight and PDI but also produces stable monodisperse polymer particles.  相似文献   

4.
Monodisperse polystyrene particles crosslinked with different concentrations of divinylbenzene were synthesized in the 3.2–9.1 μm size range by dispersion polymerization in an isopropyl alcohol/toluene mixed‐dispersion medium with poly(N‐vinylpyrrolidone) as a steric stabilizer and 2,2′‐azobisisobutyronitrile as a radical initiator. The effects of the reaction parameters such as the crosslinking agent concentration, media solvency (controlled by varying the amount of toluene addition), the initiator concentration, and the stabilizer concentration on the particle size and size distribution were investigated with reference particles with a monodisperse size distribution and crosslinked by 1.5 wt % divinylbenzene. The appropriate increase in media solvency was a prerequisite for preparing crosslinked particles without coagulated and/or odd‐shaped particles. The investigation of the effects of the polymerization parameters also shows that only specific sets of conditions produce particles with a monodisperse size distribution. The glass‐transition temperatures of the particles increased with increasing divinylbenzene concentration. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4368–4377, 2002  相似文献   

5.
The optimum conditions for preparing micron-sized monodisperse polymethylmethacrylate (PMMA) beads by dispersion polymerization in a methanol/water mixture were proposed. PMMA forming microspheres having an average molecular weight of 55,300 g/mol, 2.6 μm weight-average diameter, with a 5.3% coefficient of variation and 91% conversion, were successfully obtained in the presence of 15 wt.% of polyvinylalcohol (PVA), 100/50 (g/g) of MeOH/water mixtures at 70°C; the reaction lasted for 8 h. Compared to dispersion polymerization using polyvinylpirrolydone, PVA proved to be an extremely stable steric stabilizer in the dispersion polymerization of methylmethacrylate.  相似文献   

6.
In this study, we report the preparation of phenolic beads (PB) via a novel dispersion polymerization of 2‐phenoxyethanol (PE) and formaldehyde, in which gum acacia powder (GAP), formic acid, and sulfuric acid are employed as the steric stabilizer, the reaction medium and the catalyst, respectively. The effects of a variety of reaction parameters, including the stabilizer concentration, the agitation rate, the polymerization temperature, the molar ratio of formaldehyde to 2‐phenoxyethanol (F/P) and the amount of sulfuric acid, on the particle size and size distribution (PDI) as well as particle morphology have been investigated. Particularly, phenolic beads of a size 565 µm as well as a narrow particle size distribution (PDI = 1.153) have been prepared under the following conditions: the stabilizer concentration 2.5%, the agitation rate 700 rpm, the polymerization temperature 60°C, the molar F/P ratio 3:1, and the amount of catalyst 8 ml. In addition, a mechanism for the particle formation in dispersion polymerization of PE and formaldehyde has also been proposed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Reactive monodisperse porous poly(chloromethylstyrene-co-styrene-co-divinylbenzene) beads have been prepared by a staged templated suspension polymerization method with different concentrations of linear polystyrene porogen and chloromethylstyrene in the polymerization mixture. The presence of a small amount of linear polystyrene in the polymerization mixture leads to a dramatic increase in both the pore size and the pore volume of the resulting beads. In contrast, addition of chloromethylstyrene leads to lower surface areas and smoother surfaces due to the reduced compatibility between the polystyrene porogen and the newly formed crosslinked chains. The modification of chloromethylstyrene beads by Gabriel synthesis to obtain aminated beads has also been studied. The final number of primary amino groups is related to the starting concentration of functional benzyl chloride moieties rather than to the porous properties. Both π-basic and π-acidic type chiral selectors, (R)-1-(1-naphthyl)-ethylamine and (R)-N-(3,5-dinitrobenzoyl)phenylglycine, respectively, have been attached to the amino functionalized beads, and the resulting chiral beads have been used in the model HPLC separations of enantiomers. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2631–2643 1997  相似文献   

8.
Highly cross-linked polystyrene beads of 9.2 μm were synthesized by seed polymerization with styrene as monomer and divinylbenzene as cross linker. Other sized monodisperse PS microspheres were also prepared by varying seed particle diameter and proportion of swelling agents. Furthermore, the polystyrene beads were stained by gradual solvent evaporation method using dyes such as rhodamine 101 and acridine orange. Gradual solvent evaporation method facilitates a high concentration of fluorescent dyes on beads. This is the key to obtain fluorescent beads with high intensity. The results showed that the fabricated fluorescent microspheres could be excited to various wavelengths (such as yellow, green, red and scarlet). Our synthesized microspheres offer high fluorescence emission efficiency compared to commercial fluorescent microspheres in the mean time have other properties in common.  相似文献   

9.
A novel approach to the synthesis of highly monodisperse quantum dot‐loaded polymer beads by combining impregnation and precipitation techniques was reported. The monodisperse poly(glycidyl methacrylate) (PGMA) beads were first synthesized by dispersion polymerization. Then, the PGMA beads were chemically modified to generate carboxyl groups, and impregnation of cadmium ions (Cd2+) inside the beads. Subsequently, the cadmium ions were reacted with thioacetamide to form cadmium sulfide (CdS) quantum dots within the polymer beads. The morphology, structure, and properties of CdS quantum dot‐loaded polymer beads were studied by field emission scanning electron microscope (SEM), transmission electron microscope, fluorescence spectrophotometer, fluorescence microscope, Fourier transform infrared spectroscopy, powder X‐ray diffraction, and thermogravimetric analysis. The results indicated that the CdS quantum dot‐loaded polymer beads had an average size of 1.4 μm, and were highly monodisperse. More interestingly, the CdS quantum dots distributed evenly within the polymer beads, which provide very strong fluorescence intensity. The existence of carboxyl groups on the quantum dot‐loaded polymer beads was measured quantitatively, and was found to be 0.2 mmol/g. These CdS quantum dot‐loaded polymer beads involving functional carboxyl groups would have potential applications in biological immunoassay and photoelectronic fields. © 2013 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

10.
Poly(styrene-co-divinylbenzene) particles possessing uniform properties are attractive for various chromatographic applications. However, their preparation by dispersion polymerization is rather complicated. Our aim was to prepare monodisperse PS microspheres by dispersion polymerization of styrene with controlled addition of 1 wt % of divinyl benzene. The reaction occurs in a mixture of ethanol with 2-methoxyethanol or 2-ethoxyethanol and is stabilized and initiated by hydroxypropyl cellulose and dibenzoyl peroxide, respectively. The effects of the medium polarity based on changing of the solvent mixture ratio and several modes of divinyl benzene addition, including simple one-shot and continuous divinyl benzene post-addition, on the particle size and morphology are investigated. Slow continuous dosing of 1 wt % of divinyl benzene one hour after the start of the styrene polymerization produce monodisperse spherical PS particles 5.4 μm in size. Such microspheres might be suitable as precursor for a solid adsorbent for harmful and carcinogenic organic vapors.  相似文献   

11.
Poly(methyl methacrylate) (PMMA) particles ranging in diameter from 2 to 10 μm were prepared by dispersion polymerization. The effects of various polymerization parameters on the size and monodispersity were systematically investigated. The particle size was found to increase with increasing polymerization temperature, concentration and decomposition rate of the initiator, and solvency of the dispersion medium. It also increased with increasing concentration and molecular weight of the polymeric stabilizer, poly(vinyl pyrrolidone) (PVP). As the monomer concentration was increased from 5 to 20 wt %, a minimum was found in the particle size at a monomer concentration of 10 wt %. A costabilizer was found to be necessary for preparing monodisperse particles at stabilizer concentrations below 2 wt %. A recycling experiment showed that the consumption of PVP was quite small in each cycle and the residual materials in this system could be reused readily. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
Abstract

Seed dispersion polymerization of methyl methacrylate (MMA) in the presence of monodisperse PMMA particles was carried out in an aqueous methanol using poly(methacrylic acid) stabilizer. The polymerization using 2. 5 μ. m-sized seed particles gave monodisperse PMMA particles in the diameter up to 4. 9 μm. The solvent composition and monomer concentration greatly affected the polymerization behavior. Under appropriate conditions, monodisperse PMMA particles in the diameter up to 8. 9 μ, m was prepared from 4. 6 μm-sized seed particles. The seed dispersion polymerization of styrene in the presence of the seed particles produced monodisperse PMMA-polystyrene particles in the micron range. The particles were supposed to have a structure consisting of PMMA-core and polystyrene-shell from ESCA analysis.  相似文献   

13.
分散聚合法制备窄分布聚苯乙烯微球   总被引:7,自引:0,他引:7  
赵莹  张以举 《应用化学》1998,15(5):62-64
窄分布聚合物微球有相当广泛的用途,如用于色谱柱填料,过滤器效能和孔径的测定标准,生化反应的载体等[1].制备聚合物微球的方法有多种:如悬浮聚合物法可以制得微米级球体,但粒径分布较宽[2];超微乳液聚合法,却仅能制得小于1μm的超微球[3];唯有分散聚...  相似文献   

14.
Summary: Submicron-sized monodisperse PS particles were prepared by dispersion polymerization of styrene in ionic liquids with poly(vinylpyrrolidone) as stabilizer. Seeded dispersion polymerization of MMA was subsequently carried out with PS seeds in [Bmim][BF4] to prepare PS/PMMA composite particles. Observation of the obtained particles of ultrathin cross-sections with a scanning and transmission electron microscope revealed that no secondary nucleation occurred during the seeded dispersion polymerization and that the particles have a core-shell morphology consisting of a PS core and a PMMA shell. Successful preparation of PS/PMMA composite particles in an ionic liquid has thus been demonstrated. Moreover, PS/PAA (PS-core/PAA-shell) composite particles were prepared by seeded dispersion polymerization in [DEME][TFSI], illustrating that hydrophobic/hydrophilic composite particles can be readily prepared in the ionic liquid.  相似文献   

15.
Polystyrene (PS) particles in the size range of 1-7 µm, containing poly(ethylene glycol) or PEG on the particles surface, were prepared by multi-step seeded polymerizations. Micron-sized PS particles were first prepared by dispersion polymerization using 2,2'-azobisisobutyronitrile as initiator and polyvinyl pyrrolidone as stabilizer. Conventional swelling method was then used to increase the size of the PS particles with a large amount of styrene in presence of oil soluble initiator, benzoyl peroxide. In the final step, the PS particles have been used to carry out seeded polymerization with small amount of styrene in presence of poly(ethylene glycol)-azo or PEGA initiator with average molecular weights of the PEG chains of 200 and 3000 g mol-1 , respectively. The average size, size distribution, and surface morphology indicate that seeded polymerization in the final step with small amount of styrene in presence of PEGA is the best way to produce monodisperse polystyrene particles containing PEG near the particles surface.  相似文献   

16.
In search for HPLC separation media with new surface chemistries, a styrene-based monomer, 2,3-epoxypropyl vinylbenzyl ether, containing reactive epoxide groups has been syn-thesized and copolymerized with divinylbenzene in a suspension polymerization. The process involves the use of size monodisperse particles that are swollen with monomer and then polymerized in the presence of a porogenic diluent consisting of a mixture of 4-methyl-2-pentanol and octane. The effect of concentration of divinylbenzene on the pore size dis-tribution and the specific surface area of the resulting uniformly sized porous poly(2,3-epoxypropyl vinylbenzyl ether-co-divinylbenzene) beads has been studied. The epoxide groups of the copolymer have been hydrolyzed and the beads used for reversed-phase chro-matography of both small molecules and proteins to show the effect of hydrophobicity of the matrix on the separation properties. Reversed-phase chromatography of alkylbenzenes follows the expected pattern while for proteins the hydrolyzed beads with the highest content of the crosslinking monomer exhibit a remarkable deviation from the predicted retention characteristics. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
微米级单分散共聚物微球的制备   总被引:8,自引:0,他引:8  
用分散聚合法制备了苯乙烯 甲基丙烯酸甲酯微米级单分散共聚物微球 ,粒径为 5 4 μm .将分散聚合体系与乳液聚合体系进行了比较 ,并对共聚物微球的形貌、粒径分布及共聚情况进行了表征研究 .  相似文献   

18.
We prepared monodisperse polystyrene microspheres by dispersion polymerization using sodium polyaspartate (PAspNa) as a dispersion stabilizer in an ethanol/water medium. The influence of reaction parameters, i.e., the volume fraction of ethanol in the medium, stabilizer concentration, and the monomer concentration, on the average diameter of the prepared polystyrene microspheres and its distribution were investigated. Polystyrene microspheres were successfully prepared, and the average diameter of the prepared monodisperse polystyrene microspheres was controlled by adjusting the reaction parameters. The zeta potential of the microspheres and the time course of conversion, the particle diameter and its distribution, and particle numbers were also examined. It was found that PAspNa as a dispersion stabilizer provides an environmentally benign process for the preparation of monodisperse polymer microspheres by dispersion polymerization.  相似文献   

19.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

20.
Large uniform-sized polymer beads are desirable for "one-bead-one-compound" applications in the combinatorial synthesis of compound libraries. We have developed a technique for the preparation of large polymer spheres with narrow size distributions. Uniform-sized poly(styrene-co-divinylbenzene) beads with diameters in excess of 1 mm have been prepared by free radical polymerization in an ascension process through a heated column. The size of the beads can be adjusted by the diameter of the injection needle and the injection speed. The resin beads can be made porous by the incorporation of a porogen during the preparation; they reach a specific surface area in excess of 200 m(2)/g. The mechanical properties of the spheres and their use in organic synthesis have been studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号