首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyvinylchloride has been chemically modified with sodium benzene thiolate at different temperatures, in solvents promoting the formation of polymer gels, in solvents favoring light polymer interactions and in the absence of solvent, that is, in the melt. From the13C-NMR results it is shown that the substitution reactions on PVC, in all media and temperatures studied, are stereospecific and the nature of substituted chlorines the same.The glass transition temperature of modified polymers has been studied by differential scanning calorimetry. The glass transition temperature of the modified polymers in the absence of solvent decreases linearly with degree of substitution. When the reaction is carried out in solvents containing carbonyl groups, such as diethyl malonate, cyclohexanone and 2-butanone, the evolution of the glass transition up to about 25% substitution does not follow the above behavior. At higher levels of substitution the evolution ofT g is similar to that in the melt. For the ether-containing solvents, such as tetrahydrofurane and dioxane, the evolution lies between the two previous curves.When the reactions of PVC with sodium benzene thiolate are carried out in cyclohexanone at different temperatures, between 15–90°C, the evolution of the glass transition temperature with conversion is different for each temperature, and if the reaction temperature increases, the slope of the initial part moves to that in the absence of solvent.These results are related to the formation of PVC gels or interactions. As the nature and percentage of substituted chlorine for a given chemical composition are the same in all the solvents and conditions studied, we propose that Cl-atoms of isotactic and/or heterotactic configurations are implied in the formation of PVC gels or interactions.  相似文献   

2.
We have used combinations of light, heat, and electrostatic fields to investigate the orientation of nonlinear azo-chromophores chemically incorporated into high glass transition temperature (Tg) polyimides. A number of nonlinear optical polyimides have been synthesized in which the interaction between the nonlinear optical chromophore and the polymer main chain was systematically altered to determine to what extent this steric interaction influences the orientation of the nonlinear chromophore. Chromophores in polymers may be oriented by a number of methods: (a) polarized light at room temperature (i.e., photo-induced orientation or PIO), (b) polarized light and electric fields (i.e., photo-assisted poling or PAP) at temperatures ranging from room temperature to the polymer Tg, and (c) electric fields at Tg (thermal poling). While thermal poling and PIO are usually possible, PAP depends strongly on the molecular structure of the polymer. Previously we have shown that PIO can be accomplished at room temperature in a system where the nonlinear chromophore is embedded into the polyimide main chain via the donor substituent, and this orientation can only be thermally erased at temperatures approaching Tg. In this article we show that, whereas photoisomerization can efficiently depole donor-embedded polyimides in a matter of few minutes at room temperature, PAP does not induce any polar order. This behavior is in marked contrast to a structurally related, side-chain, nonlinear polyimide, in which the azo chromophore is tethered via a flexible linkage to the polymer backbone. In this case some PAP occurs even at room temperature, while no PAP is observed for a donor-embedded system with a similar Tg. We suggest that the orientation during PAP below Tg in the side-chain polyimide is primarily due to the movement of the azo side chains, and there is a very little coupling of this motion to the main chain. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1669–1677, 1998  相似文献   

3.
The thermal properties of blends of polycarbonate (PC) and poly(ε‐caprolactone) (PCL) were investigated by differential scanning calorimetry (DSC). From the thermal analysis of PC‐PCL blends, a single glass‐transition temperature (Tg) was observed for all the blend compositions. These results indicate that there is miscibility between the two components. From the modified Lu and Weiss equation, the polymer–polymer interaction parameter (χ12) of the PC‐PCL blends was calculated and found to range from −0.012 to −0.040 with the compositions. The χ12 values calculated from the Tg method decreased with the increase of PC weight fraction. By taking PC‐PCL blend as a model system, the values of χ12 were compared with two different methods, the Tg method and melting point depression method. The two methods are in reasonably good agreement for the χ12 values of the PC‐PCL blends. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 2072–2076, 2000  相似文献   

4.
The epoxy resin/polyurethane semi-IPN was prepared and the glass transition behavior of the semi-IPN was discussed with DSC and DMA methods. The results show that the two glass transition temperatures (Tg) referring to epoxy resin and polyurethane respectively get closer. Between the two Tg there exists another Tg related to the interface between the two polymers. SEM indicates that this semi-IPN has a two-phase continuous structure which changes with different weight compositions. This is also proved by testing the Young's modulus. It is found that the IPN system has a cellular structure. Comparatively, the compatibility between the two polymers is the best when the weight ratio of EP/PU is 70/30. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
On the basis of microhardness (H) data measured at room temperature only for a number of polymers in the glassy state, a linear correlation between H and the glass transition temperature Tg has been found (H = 1.97Tg − 571). By means of this relationship, the deviation of the H values from the additivity law for some multicomponent and/or multiphase polymeric systems can be accounted for. The latter usually contains a liquidlike soft component and/or phase with Tg below room temperature. A completely different deformation mechanism in comparison to systems with Tg above room temperature is invoked. A novel expression for the hardness of polymers in terms of crystallinity of the single components and/or phases, the Tg values, and the mass fraction of each component is proposed. This expression permits the calculation of (i) the room‐temperature H value of amorphous polymers, mainly containing single bonds in the main chain, provided Tg is known, and of (ii) the contribution of the soft liquidlike components (phases) to the hardness of the entire multiphase system. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1413–1419, 1999  相似文献   

6.
The glass transition temperature of a copolymer depends not only on chemical composition but also on its comonomer sequences. This experimental fact is explained by Barton's and Johnston's equations. Their equations, though complicated, become simple, if a suitable parameter is used to describe the comonomer sequences. It is shown that with these new expressions, their equations can be used to understand glass transition temperatures of two additional types of copolymers, compatible multiblock copolymers and homopolymers with various tacticities treated as steric copolymers.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayWe wish to thank the reviewer for his/her kind linguistic improvement of this article.  相似文献   

7.
8.
Polymer composites composed of poly(methyl methacrylate) (PMMA) and silica (14 nm diameter) have been investigated. The influences of sample preparation and processing have been probed. Two types of sample preparation methods were investigated: (i) solution mixture of PMMA and silica in methyl ethyl ketone and (ii) in situ synthesis of PMMA in the presence of silica. After removing all solvent or monomer, as confirmed using thermogravimetric analysis, and after compression molding, drops in Tg of 5–15 °C were observed for all composites (2–12% w/w silica) and even pure polymer reference samples. However, after additional annealing for 72 h at 140 °C, all previously observed drops in Tg disappeared, and the intrinsic Tg of bulk, pure PMMA was again observed. This is indicative of nonequilibrium trapped voids being present in the as‐molded samples. Field‐emission scanning electron microscopy was used to show well‐dispersed particles, and dynamic mechanical analysis was used to probe the mechanical properties (i.e., storage modulus) of the fully equilibrated composites. Even though no equilibrium Tg changes were observed, the addition of silica to the PMMA matrices was observed to improve the mechanical properties of the glassy polymer host. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2270–2276, 2007  相似文献   

9.
We carried out a large set of tests to establish a correlation between the molecular (network) structure (influenced by molecular weight, molecular weight distribution, and melt predeformation) and mechanical responses of several glassy polymers to uniaxial compression at different temperatures and different compression speeds. The experimental results show that to have ductile responses there must be an adequate chain network, afforded by the interchain uncrossability among sufficiently long chains. Specifically, polystyrene (PS) and poly(methyl methacrylate) of sufficiently low molar mass do not have chain network and are found to be very brittle. Binary PS mixtures are brittle at room temperature when the volume fraction of the high‐molecular‐weight component is sufficiently low (e.g., at and below 27.5%). Moreover, sufficiently melt‐stretched PS mixtures show brittle fracture when compressed along the same direction, along which melt stretching was made. All the experimental findings confirm that a robust chain network is also a prerequisite for yielding and ductile cold compression of polymer glasses, as is for extension. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 758–770  相似文献   

10.
The effect of silicananofiller on the glass transition of a polyurethane was studied by DSC. Thepristine polymer exhibits a single glass transition at about –10°C.Uniform SiO2 spheres with different average sizes and narrow size distributionswere synthesized in solution by the Stöber method [1]. Both the effectsof silica content within the polymer and particle size were investigated,as well as two different surface treatments. Scanning electron microscopy(SEM) clearly confirms the presence of the particles within the polymer matrix,showing uniform distribution and no agglomeration. While shifting of the glasstransition has been reported by many authors, we have not seen any noticeableshift in this polymer. Surprisingly, we found no relevant effects when eitherincreasing the filler content or changing the particle size. Different amountsof particles with average diameters of 175, 395 and 730 nm did not affectthe glass transition temperature of the pristine polymer.  相似文献   

11.
12.
A lap‐shear joint mechanical testing method has been probed to measure the surface glass transition temperature (T) of the thick bulk films of high‐molecular‐weight polymers. As T, the temperature transition “occurrence of autoadhesion–nonoccurrence of autoadhesion” has been proposed. The influence of chain flexibility, of molecular architecture, of polymer morphology, and of chain ends concentration on the T has been investigated. The correlation between the reduction in T with respect to the glass transition temperature of the bulk (T) and the intensity of the intermolecular interaction in the polymer bulk in amorphous polymers has been found. The effect of surface roughness on T has been discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2012–2021, 2010  相似文献   

13.
Poly(styrene‐co‐ethyl acrylate) [P(St‐co‐EA)] with different ratios of St/EA was mixed with the small molecule 4,4′‐thio‐bis(6‐tert‐butyl‐m‐methyl phenol) (AO300) to investigate the influence of hydrogen bonding strength on the glass transition behavior. The glass transition temperature (Tg) linearly increased after adding AO300, and the slope value decreased with increased St/EA ratio. All lines could be extended to 62 °C, demonstrating that Tg of the small molecule in situ detected by the polymer chain was much higher than that by small molecule itself (29 °C). Fourier transform infrared spectroscopy analysis showed that the small molecules began to be self‐associated at a concentration where the hydrogen bonded carbonyl ratio of the bulk polymer was approximately 0.5 and irrespective of the St/EA ratio. Above the critical loading, the mixture's Tg negatively deviated from the linearly extended lines because of self‐association of the small molecules. The apparent Tg of AO300 was found to strongly depend on intermolecular hydrogen bonding number and strength. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 400–408  相似文献   

14.
In this article, we utilize finite element modeling to investigate the effect of nanoparticle agglomeration on the glass transition temperature of polymer nanocomposites. The case of an attractive interaction between polymer and nanofiller is considered for which an interphase domain of gradient properties is developed. This model utilizes representative volume elements that are created and analyzed with varying degrees of nanoparticle clustering and length scale of interphase domain. The viscoelastic properties of the composites are studied using a statistical approach to account for variations due to the random nature of the microstructure. Results show that a monotonic increase in nanofiller clustering not only results in the loss of interphase volume but also obstructs the formation of a percolating interphase network in the nanocomposite. The combined impacts lead to a remarkable decrease of Tg enhancement of clustering nanofillers in comparison with a well‐dispersed configuration. Our simulation results provide qualitative support for experimental observations that clustering observed at high nanofiller concentrations negatively impacts the effects of the nanofiller on overall properties. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

15.
16.
In this article, macroinitiators with different glass transition temperature (Tg) were synthesized by reversible additional‐fragmental chain transfer polymerization, and used to prepare polymer‐dispersed liquid crystals (PDLCs) with methyl acrylate. The memory effect of these PDLCs was investigated. The results showed that remarkable memory effect exhibit only in PDLCs with high and low Tg block chain. The possible mechanism responsible for the behavior is sketched. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 729–732, 2010  相似文献   

17.
Linear polyurethane, linear segmented polyurethane, polyurethane networks, and polyurethane acrylate networks of various composition were synthesized. The variation of Tg with the type of macrodiol, its length, and the chemical composition of the polymer were studied in relation with the percentage of soft segments, the molar mass between crosslinks, and the concentration of urethane bonds. In this work, the networks were considered as composed of chain segments of various composition between point-like crosslinks. The chemical heterogeneities of the networks were not taken into account. For polyurethanes, it was shown that Tg values are essentially controlled by the amount of urethane bonds. For polyurethane acrylates, the Tg values are dependent on the amount of urethane bonds but also on the presence of crosslinks whose number is varying with the excess of diisocyanate of the first step three times faster for PUA compared with PU. No clear relation was observed between Tg and the molar mass between point-like crosslinks. Another approach considering the network heterogeneities is indispensable and will be used in a following work. © 1996 John Wiley & Sons, Inc.  相似文献   

18.
The definition of molecular cooperativity is discussed. The characteristic length of the glass transition describes the size of this cooperativity. Differential scanning calorimetry (DSC) and heat capacity spectroscopy (HCS) results of a series of poly(n-alkyl methacrylates) (alkyl = methyl, ethyl, propyl, butyl, pentyl, hexyl, and octyl) and a series of statistical copolymers poly(n-butylmethacrylate-stat-styrene) are discussed in terms of molecular cooperativity in the αβ splitting region, where a high-frequency dispersion zone a splits off into the main transition zone α and a Goldstein Johari process β at lower frequencies. The characteristic length tends to small values of order one monomer diameter in the splitting region for scenarios with an α relaxation onset. The statements about the size scale of cooperativity are conditional upon certain assumptions leading to the equation used for calculation of this size from HCS and DSC data. The step height of heat capacity (Δcp) and, with less certainty, the square root of the cooperativity volume or number (V1/2α or 1/2α) are proportional to the temperature distance from the cooperativity onset, T = Tons. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
The coil–globule transition and dynamics of a lattice self‐avoiding bond fluctuation polymer chain confined in slit are studied by Monte Carlo simulations. The coil–globule transition temperature of polymer chain is increased at intermediate slit height H (HRG0 with RG0 the radius of gyration of polymer in dilute solution) due to the squeeze of the polymer in the repulsive slit, but it is decreased by surface attraction as the polymer is extended along the surface. We have compared the difference between the rotational relaxation time τR for the reorientation of end‐to‐end vector and the relaxation time τ for the polymer diffusing over a distance of the size of polymer. We find that τR is clearly distinct from τ as they have different scaling exponents in their slit height‐dependent behaviors and for the polymer in the extended coil state, that is, αR > α. And both exponents increase with an increase in the intrapolymer attraction and surface attraction. However, these scaling relations are destroyed by strong surface attraction when the polymer is adsorbed on surfaces. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2018 , 56, 1053–1062  相似文献   

20.
Blends of poly(N‐methyldodecano‐12‐lactam) PMDL with poly(4‐vinyphenol) PVPh have been studied by the DSC and ATR FTIR methods. The difference in glass transition temperature Tg between the components is 206 °C. A single composition‐dependent Tg suggests miscibility of the system, that is, homogeneity on the scale of about 10 nm. Fitting of the equation of Brostow et al. to the Tg data indicates relatively strong specific interactions and high complexity of the system. The Schneider's equation applied separately to low‐ and high‐PVPh regions provides good agreement with experiment; the calculated curves cross at the point of PVPh weight fraction 0.27. In the low‐PVPh region, the analysis indicates weak interactions with predominance of segment homocontacts and strong involvement of conformational entropy. In the high‐PVPh region, strong specific interactions predominate and entropic effects are suppressed. Composition dependences of the heat capacity difference at Tg and the width of glass transition indicate strong interactions in the system and existence of certain heterogeneities on segmental level, respectively. According to ATR FTIR, hydrogen bonds between PVPh as proton donor and PMDL as proton acceptor induce miscibility in blends of higher PVPh content (above about 0.28 weight fraction). In low‐PVPh blends, it is conformational entropy that enables intimate intermolecular mixing. Hydrogen bonds adopt several (distorted) geometries and are on average stronger than average hydrogen bonds formed in self‐associating PVPh. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号