首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
A simple anion receptor (i.e. salicylaldehyde-indole-2-acylhydrazone) was synthesised and its recognition properties were investigated by naked-eye observation, UV–vis titration spectra, 1H NMR spectroscopy and DFT calculations. The obtained results indicated that this receptor could realise the selective colorimetric sensing and absorption ratiometric response towards AcO in CH3CN–DMSO medium, by virtue of threefold intermolecular hydrogen bonding interactions formed with phenolic OH, indole NH and amide NH.  相似文献   

2.
Spectrophotometric and 1H NMR titrations of N-methoxyethyl-N'-(4-nitrophenyl)thiourea (3) by Bu(4-)NOAc show that in DMSO deprotonation of the receptor and formation of a hydrogen-bonded complex with anion proceed simultaneously but in MeCN deprotonation requires the participation of the second acetate anion. The formation constants of hydrogen-bonded complexes were determined from titrations in the presence of added acetic acid, which suppressed deprotonation. These constants together with independently measured stability constants of (AcO)(2)H(-) complexes were employed for a rigorous numerical analysis of titration results in the absence of added acid, which allowed us to determine the equilibrium deprotonation constants as well as pKa values for 3 in both solvents. Although 3 appeared to be a weaker acid than AcOH in both solvents, it can be deprotonated by acetate in dilute solutions when the concentration of liberated acetic acid is low enough. With disubstituted N,N-bis(methoxyethyl)-N'-(4-nitrophenyl)thiourea 4 only deprotonation equilibrium is observed. In contrast, both parent urea derivatives 1 and 2 cannot be deprotonated by acetate anions. Independent of the real type of equilibrium, whether it is a deprotonation or a hydrogen bonding, titration plots always can be satisfactorily fitted to a formal 1:1 binding isotherm. A relationship between apparent "binding constants" and real equilibrium constants of hydrogen bonding association and deprotonation processes is discussed.  相似文献   

3.
Dimethylsulfoxide (DMSO)–Br complexes were generated by pulse radiolysis of DMSO/bromomethane mixtures and the formation mechanism and spectral characteristics of the formed complexes were investigated in detail. The rate constant for the reaction of bromine atoms with DMSO and the extinction coefficient of the complex were obtained to be 4.6×109 M−1 s−1 and 6300 M−1 cm−1 at the absorption maximum of 430 nm. Rate constants for the reaction of bromine atoms with a series of alcohols were determined in CBrCl3 solutions applying a competitive kinetic method using the DMSO–Br complex as the reference system. The obtained rate constants were ∼108 M−1 s−1, one or two orders larger than those reported for highly polar solvents. Rate constants of DMSO–Br complexes with alcohols were determined to be ∼ 107 M−1 s−1. A comparison of the reactivities of Br atoms and DMSO–Br complexes with those of chlorine atoms and chlorine atom complexes which are ascribed to hydrogen abstracting reactants strongly indicates that hydrogen abstraction from alcohols is not the rate determining step in the case of Br atoms and DMSO–Br complexes.  相似文献   

4.
5.
Studies of hydrogen bonding between water and bis(pentane-2,4-dionato)-beryllium(II) (Be(acac)2), bis(3-methylpentane-2,4-dionato)-beryllium(II) (Be(Meacac)2), and tris(pentane-2,4-dionato)cobalt(III) (Co(acac)3) have been undertaken in [2H]6-benzene solution using1H NMR and infra-red spectroscopy. Equilibrium constants for 1:1 water-metal complex hydrates, and approximate enthalpies and entropies of reaction, have been measured from the1H NMR data. The equilibrium constants are larger for Co(acac)3 than for the Be(II) complexes, in line with previous data for the partition of these chelates between water and aliphatic hydrocarbon solvents.  相似文献   

6.
Three 3,3'-di(4-substituted-phenyl)-1,1'-isophthaloylbis(thiourea) compounds were designed as novel neutral anion receptors, and synthesized by simple steps in good yields. The single crystal structure of receptor 1 shows that a solvent molecule was captured by the host molecule through intermolecular hydrogen bonding. Moreover, it was self-assembled as a supramolecular system for the presence of abundant inter- and intramolecular hydrogen bonding and π-π interactions between phenyl groups. Their application as anion receptors has been examined by UV-Vis and ^1H NMR spectroscopy, showing that they had a higher selectivity for fluoride than other halides. The host and guest formed a 1 : 1 stoichiometry complex through hydrogen bonding interactions in the first step, then following a process of deprotonation in presence of an excess of F^- in the solvent of DMF.  相似文献   

7.
The proton transfer in 1 : 1 mixtures of phosphoric acid-di-n-butylester with various aromatic amines has been studied in deutero-chloroform and DMSO-d6 by 1H NMR spectroscopy. The 50% equilibrium was found for both solvents at ΔpKa(50%)-values from 4.4 to 5.2, i.e. the strength of the base is 4.4 to 5.2 higher than that of the acid. The titration curves are steeper in DMSO than in chloroform, indicating a higher potential barrier in POH … N ? PO? … H+N hydrogen bonds in the more polar solvent.  相似文献   

8.
The rate constants of alkaline fading of a number of triphenylmethane (TPM) dyes including methyl green (ME2+), brilliant green (BG+), fuchsin acid (FA2?), and bromophenol blue (BPB2?) were obtained in aqueous binary mixtures of 2‐propanol (protic solvent) and dimethyl sulfoxide (DMSO) (aprotic solvent) at different temperatures. It was observed that the reaction rate constants of BG+ and ME2+ increased and those of FA2? and BPB2? decreased with an increase in weight percentages of aqueous 2‐propanol and DMSO binary mixtures. 2‐Propanol and DMSO interact with the used TPM molecules through hydrogen bonding and ion–dipole interaction, respectively, in addition to their hydrophobic interaction with TPM dyes. The fundamental rate constants of a fading reaction in these solutions were obtained by the SESMORTAC model. Also, the effect of electric charge and substituent groups of a number of TPM dyes on their alkaline fading rate was studied.  相似文献   

9.
Carboxylate and salicylic OH coordinate bonding as well as intramolecular and intermolecular hydrogen bonding of bis-3,5-diisopropylsalicylatozinc(II), [ZnII(3,5-DIPS)2], with Lewis bases were studied to determine mechanisms accounting for antioxidant reactivity of ZnII(3,5-DIPS)2. Apparent thermodynamic parameters: K eq, ΔS 0, ΔH 0, and ΔG 0 were determined for these equilibria with bonding of two molecules of dimethyl sulfoxide-d6 (DMSO) or ethyl acetate-d8 (EA) to the ZnII using NMR and FTIR. We conclude that addition of two equivalents of DMSO or EA to non-polar solutions of ZnII(3,5-DIPS)2 results in bonding of DMSO or EA to ZnII via sulfoxide or ester carbonyl oxygen atoms with ternary complex formation, leading to weakening of carboxylate and salicylic OH coordinate bonding to ZnII and strengthening intramolecular hydrogen bonding between protons of salicylic OH groups and carboxylate oxygens. Subsequent addition of two or three additional equivalents of DMSO or EA leads to intermolecular hydrogen bonding between protons of salicylic OH groups.  相似文献   

10.
Two novel artificial receptors, one containing phenolic hydroxyl group and diamide (1), the other only containing diamide (2), were designed and synthesized. The binding ability evaluated by UV–vis and fluorescence titration experiments in dry DMSO revealed that compound 1 could selectively recognize AcO?. In particular, the binding ability can also be detected in the DMSO/H2O solution by UV–vis. The interference experiment result showed that the binding ability was not influenced by the existence of other anions. In contrast, there were no detectable interaction between receptor 2 and anions. The further insights to the nature of interaction between receptor 1 and AcO? were investigated by 1H NMR titration experiments and theoretical investigation, which demonstrated receptor 1 complexed AcO? through the synergistic hydrogen bonding interaction of OH and NH.  相似文献   

11.
A piperidine‐derived tetraalkylammonium salt with a non‐coordinating counteranion worked as an effective hydrogen‐bonding catalyst in an aza‐Diels–Alder reaction of imines and a Danishefsky diene. The hydrogen‐bonding interaction between the ammonium salt and an imine was observed as part of a 1H NMR titration study.  相似文献   

12.
The synthesis of a novel water-soluble guanidiniocarbonyl pyrrole carboxylate zwitterion 2 is described, and its self-association in aqueous solutions is studied. Zwitterion 2 forms extremely stable 1:1 dimers which are held together by an extensive hydrogen bonding network in combination with two mutual interacting ion pairs as could be shown by ESI MS and X-ray structure determination. NMR dilution studies in different highly polar solvents showed that dimerization is fast on the NMR time scale with association constants ranging from an estimated 10(10) M(-1) in DMSO to a surprisingly high 170 M(-1) in water. Hence, zwitterion 2 belongs to the most efficient self-assembling systems solely on the basis of electrostatic interactions reported so far. Furthermore, an amidopyridine pyrrole carboxylic acid 10 was developed as a neutral analogue of zwitterion 2, which also dimerizes with an essentially identical hydrogen bonding pattern (according to ESI MS and X-ray structure determination) but lacking the ionic interactions. NMR binding studies demonstrated that the solely hydrogen-bonded neutral dimer of 10 is stable only in organic solvents of low polarity (K > 10(4) M(-1) in CDCl3 but <10 M(-1) in 5% DMSO in CDCl3). The comparison of both systems impressively underlines the importance of ion pair interactions for stable self-association of such H-bonded binding motifs in water.  相似文献   

13.
The capability of resorcinarenes to bind anions within the alkyl feet at the lower rim has been exploited as the starting point for developing a new cavitand able to engulf contact ion pairs of primary ammonium salts in chlorinated solvents with association constants (Kass) in the range of 103–104 M ?1. Methylene bridges were introduced into the upper rim to freeze the resorcinarene in the cone conformation with the four Hdown protons converging in the lower pocket, thereby maximizing the CH–anion interactions responsible for the anion binding. Four additional phosphate moieties were introduced into the lower rim in close proximity to the anionic site to provide hydrogen‐bonding‐acceptor P?O groups and promote cation complexation at the bottom of the cavitand. The binding ability of the synthesized ligands was analyzed by 1H NMR spectroscopy and, when possible, by isothermal titration calorimetry (ITC); the data were in agreement when complementary techniques were used.  相似文献   

14.
Dipolar aprotic cosolvents, such as DMSO and acetonitrile, accelerate the rates of hydrolysis of phosphate monoester dianions. It has been speculated that the rate acceleration arises from the disruption of hydrogen bonding to the phosphoryl group. An aqueous solvation shell can stabilize the dianionic phosphoryl group by forming hydrogen bonds to the phosphoryl oxygens, whereas solvents such as DMSO are incapable of forming such bonds. It has been proposed that the loss of stabilization could result in a weakened P-OR ester bond, contributing to the observed faster rate of hydrolysis. Computational results support this notion. We have used the 18O-induced perturbation to the 31P chemical shift to ascertain whether solvent changes result in alterations to the P-O(R) bond. We have studied 16O18O-labeled methyl, ethyl, phenyl, p-nitrophenyl, diethyl p-nitrophenyl, triphenyl, and di-tert-butyl ethyl phosphate in the solvents water, methanol, chloroform, acetonitrile, dioxane, and DMSO. The results suggest no significant solvent-induced weakening of the phosphate ester bonds in any of the solvents tested, and this is unlikely to be a significant source for the acceleration of hydrolysis in mixed solvents.  相似文献   

15.
Dissolution of h5-C5H5Fe(CO)2R (I) (R = cyclohexyl or cyclohexylmethyl) in DMSO leads to the formation of a solvent coordinated acyl complex, h5-C5H5Fe(CO)(COR)(DMSO) (II). Treatment of this complex with triphenylphosphine leads to its conversion to h5-C5H5Fe(COR)(PPh3) (III). Rates for the reaction I ? and II → III have been determined. A comparison of the rates of the reaction I → III in eight solvents shows no specific rate acceleration in DMSO and no correlation with solvent donicity. The results are in accord with a two step mechanism in which the first intermediate is the coordiantively-unsaturated species h5-C5H5Fe(COR)(CO). The small spread in rates for solvents of widely different dielectric constants suggests little charge separation in the transition state for this step.  相似文献   

16.
The lactam groups of dipyrrinones avidly engage in amide-amide hydrogen bonding to form dimeric association complexes in non-polar solvents (in CHCl3, KD ∼25,000 M−1 at 22 °C). The corresponding thioamides (dipyrrinthiones), prepared from dipyrrinones by reaction with Lawesson's reagent, also form intermolecularly hydrogen-bonded dimers in non-polar solvents, albeit with much weaker association constants (in CHCl3, KD ∼200 M−1 at 22 °C). When a carboxylic acid group is tethered to C(9) of the dipyrrinone, as in the hexanoic acid of [6]-semirubin, tight intramolecular hydrogen bonding between the carboxylic acid group and the lactam moiety (intramolecular Kassoc ?25,000) is found in CHCl3 with no evidence of dimers. In contrast, the analogous dipyrrinthione, [6]-thiosemirubin, eschews intramolecular hydrogen bonds, as determined using NMR spectroscopy and vapor pressure osmometry, preferring to form intermolecularly hydrogen-bonded dimers of the thioamide-thioamide type.  相似文献   

17.
Anion binding properties of neutral helical foldamers consisting of urea type units in their backbone have been investigated. 1H NMR titration studies in various organic solvents including DMSO suggest that the interaction between aliphatic oligoureas and anions (CH3COO?, H2PO4?, Cl?) is site‐specific, as it largely involves the urea NHs located at the terminal end of the helix (positive pole of the helix), which do not participate to the helical intramolecular hydrogen‐bonding network. This mode of binding parallels that found in proteins in which anion‐binding sites are frequently found at the N‐terminus of an α‐helix. 1H NMR studies suggest that the helix of oligoureas remains largely folded upon anion binding, even in the presence of a large excess of the anion. This study points to potentially useful applications of oligourea helices for the selective recognition of small guest molecules.  相似文献   

18.
We report the synthesis of telechelic poly(norbornene) and poly(cyclooctene) homopolymers by ring‐opening metathesis polymerization (ROMP) and their subsequent functionalization and block copolymer formation based on noncovalent interactions. Whereas all the poly(norbornene)s contain either a metal complex or a hydrogen‐bonding moiety along the polymer side‐chains, together with a single hydrogen‐bonding‐based molecular recognition moiety at one terminal end of the polymer chain. These homopolymers allow for the formation of side‐chain‐functionalized AB and ABA block copolymers through self‐assembly. The orthogonal natures of all side‐ and main‐chain self‐assembly events were demonstrated by 1H NMR spectroscopy and isothermal titration calorimetry. The resulting fully functionalized block copolymers are the first copolymers combining both side‐ and main‐chain self‐assembly, thereby providing a high degree of control over copolymer functionalization and architecture and bringing synthetic materials one step closer to the dynamic self‐assembly structures found in nature.  相似文献   

19.
Binary mixtures of alcohols(ethyl,n-butyl and n-amyl)with several aprotic sol-vents,such as acetone,dioxane,THF,DMSO and DMF have been studied systematically by~1H,~(13)C,~(15)N and ~(17)O NMR measurements.The concentration dependence of chemical shift ofthe solvent was used to evaluate equilibrium constants of the complexation of alcohols withthe solvents.A relationship between the proton shift of alcohol uncombined with the solventand its concentration was found,and the fraction of unassociated hydroxyl groups was thusquantitatively described.The effect of solvent on self association and complexation of thealcohol is discussed on the basis of the electron donicity of the solvents.  相似文献   

20.
To clarify the role of diluents in the preparation of molecularly imprinted polymers utilizing only hydrogen bonding, we investigated the effects of diluents by using different solvents. Melatonin (N-acetyl-5-methoxytryptamine), an amide bond and indole ring-containing hormone was chosen as the target molecule. N-Propionyl-5-methoxytryptamine was used as the pseudo template, methacrylic acid as the functional monomer, and solvents were used as diluents. Interactions between the template, the functional monomer, melatonin, and the solvents, were observed by 1H NMR spectroscopy. The polymers were evaluated by high-performance liquid chromatography. The results suggest the hydrogen bonding-acceptor capacity of the solvent is the most important factor in the preparation of molecularly imprinted polymers for hydrogen bonding-donating molecules. Hydrogen bonding between the template, the functional monomer, and solvent can be estimated from the chemical shifts in 1H NMR spectra of those molecules in the solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号