首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以三聚氰胺和硼酸为原料在水溶液中反应合成出了一种新的BCN化合物先驱体C3N6H6(H3BO3)2。XRD表征结果表明三聚氰胺和硼酸的最佳配比为1∶3(物质的量比)。用单晶X-射线衍射分析法测定了该化合物的晶体结构。该化合物属单斜晶系,空间群为P21/C,晶胞参数为a=0.3597(7)nm,b=2.0105(4)nm,c=1.4112(3)nm,α=90,°β=92.07(3),°γ=90,°V=1.0199(3)nm3,Z=4,D c=1.627g.cm-3,μ(MoKα)=0.144mm-1,F(000)=520。晶体结构经全矩阵最小二乘法修正,最终可靠因子R1=0.0519,wR2=0.1361。该化合物是由C3N6H6分子和H3BO3分子通过氢键加合组装形成的三维超分子结构化合物。  相似文献   

2.
3.
傅瑞标  吴新涛  胡胜民  王龙胜 《结构化学》2004,23(10):1107-1110
1 INTRODUCTION Metal organophosphonates have attracted considerable attention for over three decades due to their potential or practical applications, include- ing ion exchanges[1, 2], molecular sensors[3] and optics[4, 5]. Recently, a number of porous m…  相似文献   

4.
Synthesis and Structure of [(Ph3C6H2)Te]2, [(Ph3C6H2)Te(AuPPh3)2]PF6 and [(Ph3C6H2)TeAuI2]2 [(2,4,6-Ph3C6H2)Te]2 reacts with Ph3PAu+ to yield [2,4,6-Ph3C6H2TeAuPPh32]PF6 which can be oxidized by I2 to form the gold(III) complex [(2,4,6-Ph3C6H2)TeAuI2]2. [(2,4,6-Ph3C6H2)Te]2 crystallizes in the monoclinic space group P21/c with a = 810.6(2); b = 2026.5(5); c = 2260.6(7) pm; β = 99.23(3)° and Z = 4. In the crystal structure the ditelluride exhibits a dihedral angle C11? Te1? Te2? C21 of 66.1(2)°. The distance Te1? Te2 is 269.45(6) pm. In the cation of the triclinic complex [(2,4,6-Ph3C6H2)Te(AuPPh3)2]PF6 (space group P1 ; a = 1197.4(3); b = 1457.2(4); c = 1680.0(6) pm; α = 84.69(3)°; β = 85.11(3)°; γ = 75.54(3)°; Z = 2) a pyramidal skeleton RTeAu2 with distances Te? Au = 259.2(1) and 257.8(2) pm and Au? Au = 295.3(1) pm is present. [(2,4,6-Ph3C6H2)TeAuI2]2 crystallizes in the triclinic space group P1 with a = 1086.3(3); b = 1462.9(6); c = 1654.2(2) pm; α = 85.25(2)°; β = 87.44(1)°; γ = 80.90(3)°; Z = 2. In the centrosymmetrical dinuclear complex [(2,4,6-Ph3C6H2)TeAuI2]2 the Au atoms exhibit a square-planar coordination by two iodine atoms and two tellurolate ligands. The tellurolate ligands form symmetrical bridges with distances Te? Au = 260.0 pm. The distances Au? I are in the range of 260.3(1) and 263.7(1) pm.  相似文献   

5.
Investigations on Syntheses and Reactions of Fluorophenylmercury Compounds with the Ligands 2-FC6H4, 2,6-F2C6H3, and 2,4,6-F3C6H2 2,6-F2C6H3HgCl and 2,4,6-F3C6H2HgCl are synthesized via the reactions of the corresponding phenylmagnesium compounds and HgCl2. 2-FC6H4HgCl is selectively obtained only in a reaction involving intermediately formed Cd(2-FC6H4)2. The diphenylmercury derivative Hg(2,4,6-F3C6H2)2 is obtained while stirring a dichloromethane solution of 2,4,6-F3C6H2HgCl for several days. The direct mercuration of 1,3,5-trifluorobenzene with Hg(OCOCF3)2 yields, depending on the stoichiometry, 2,4,6-trifluorophenylmercury trifluoroacetate and 1,3-bis(trifluoroacetatomercuri)-2,4,6-trifluorobenzene which is converted into the corresponding chloromercuri derivative by treatment with hydrochloric acid in CH3CN. As a product of the reaction of 1,3,5-trifluorobenzene and HgO in CH3COOH only 2,4,6-trifluorophenylmercury acetate is isolated although spectroscopic evidence has been found for double and triple mercurated derivatives. All compounds are characterized by elemental analyses, nmr and mass spectra. The reaction of Hg(2,4,6-F3C6H2)Cl and Cd(CF3)2 · 2 CH3CN gives Hg(2,4,6-F3C6H2)CF3 which slowly dismutates in CH2Cl2 solution into Hg(2,4,6-F3C6H2)2 and Hg(CF3)2. The ligand exchange of Hg(2,4,6-F3C6H2)2 and TeCl4 selectively gives Te(2,4,6-F3C6H2)2Cl2 and Hg(2,4,6-F3C6H2)Cl. Transmetalations of Hg(2,4,6-F3C6H2)2 and gallium or tin give NMR spectroscopic evidence for the new derivates Ga(2,4,6-F3C6H2)3 and Sn(2,4,6-F3C6H2)4.  相似文献   

6.
Ionization efficiencies of 14 organic compounds have been measured in the wavelength region from 105 to 134nm using an ionization chamber. The compounds examined are cyclopropane, propylene, l-butene, isobutene, cis-and trans-2-butenes, cyclohexane, 1-hexane, tetramethylethylene, ethyl alcohol, dimethyl ether, n-, and iso-propyl alcohol, and ethyl methyl ether. The ionization efficiencies of cyclopropane and cyclohexane monotonically increase with increasing photon energy, but those for the others show a peak or a shoulder in the wavelength region of the present work.  相似文献   

7.
8.
Raman and FTIR spectra of [Cu(H2O)6](BrO3)2 and [Al(H2O)6](BrO3)3 x 3H2O are recorded and analyzed. The observed bands are assigned on the basis of BrO3- and H2O vibrations. Additional bands obtained in the region of v3 and v1 modes in [Cu(H2O)6](BrO3)2 are due to the lifting of degeneracy of v3 modes, since the BrO3- ion occupies a site of lower symmetry. The appearance v1 mode of BrO3- anion at a lower wavenumber (771 cm(-1)) is attributed to the attachment of hydrogen to the BrO3- anion. The presence of three inequivalent bromate groups in the [Al(H2O)6](BrO3)3 x 3H2O structure is confirmed. The lifting of degeneracy of v4 mode indicates that the symmetry of BrO3- anion is lowered in the above crystal from C3v to C1. The appearance of additional bands in the stretching and bonding mode regions of water indicates the presence of hydrogen bonds of different strengths in both the crystals. Temperature dependent Raman spectra of single crystal [Cu(H2O)6](BrO3)2 are recorded in the range 77-523 K for various temperatures. A small structural rearrangement takes place in BrO3- ion in the crystal at 391 K. Hydrogen bounds in the crystal are rearranging themselves leading to the loss of one water molecule at 485 K. This is preceded by the reorientation of BrO3- ions causing a phase transition at 447 K. Changes in intensities and wavenumbers of the bands and the narrowing down of the bands at 77 K are attributed to the settling down of protons into ordered positions in the crystal.  相似文献   

9.
Two hydrates of sodium 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Na(H2O)J(C17H13O6SO3)*2H2O,] 1) and nickel 5,7‐dihydroxy‐6,4′‐dimethoxyisoflavone‐3′‐sulfonate ([Ni(H2O)6](C17H13O6SO3)2*4H2O, 2) were synthesized and characterized by IR, 'H NMR and X‐ray diffraction analyses. The hydrate 1 crystallizes in the mono‐clinic system, space group P2(1) with a=0.8201(9) nm, b=0.8030(8) nm, c= 1.5361(16) nm, β=102.052(12)°, V =0.9893(18) nm3, D,= 1.579 g/cm3, Z=2, μ=0.252 nm?1, F(000)=488, R=0.0353, wR=0.0873. The hydrate 2 belongs to triclinic system, space group P‐1 with a=0.7411(3) nm, b=0.8333(3) nm, c=1.7448(7) nm, α= 86.361(6)°, β=86.389(5)°, γ= 88.999(3)°, V=1.0731(7) nm3, D,=1.587 g/cm3, Z=1, μ=0.649 m?1, F(000)= 534. In the structure of 1, the sodium cation is coordinated by six oxygen atom and two adjacent ones are bridged by three oxygen atoms to form an octahedron chain. The C? H…?… hydrogen bonds exist between two isoflavone molecules in the structure of 2. Meanwhile, hydrogen bonds in two compounds, link themselves to assemble two three‐dimensional network structures, respectively.  相似文献   

10.
Under the influence of air, a facile 1,4-addition of diethylzinc to acyloxypyranones and alkoxypyranones 1 takes place. Reaction of diethylzinc with molecular oxygen provides EtOOZnEt, which catalyzes the addition of diethylzinc.  相似文献   

11.
12.
The first crystallographically characterized molybdenum(vi) selenoether complex [Mo(2)O(4)(OC(3)H(6)SeC(3)H(6)O)(2)] and its thioether analogue [Mo(2)O(4)(OC(3)H(6)SC(3)H(6)O)(2)] were synthesised. Their structural, electrochemical and oxygen atom transfer properties are compared. This is relevant for the molybdenum cofactors of the DMSO reductase family where the coordination of the active site metal occurs through O (serine/aspartate), S (cysteine) or Se (selenocysteine). Both structures are almost identical except for those parameters that are directly derived from the different sizes of the varied ligand atoms (Se and S). No trans influence was observed. The metal centered redox process (Mo(V)<-->Mo(VI)) is at slightly lower voltage for the sulfur than for the selenium complex. The selenium compound catalyses the oxygen atom transfer from DMSO to PPh(3) by a different mechanism and at a higher rate than the sulfur compound, which is an indication that cysteine and selenocysteine might be used for a purpose in the different molybdenum and tungsten cofactors.  相似文献   

13.
The hydrogen transfer reaction between C2H6 and CF3 radicals, generated by the photolysis of CF3I, has been studied in the temperature range 298–617 K. The rate constant, based on the value of 1013.36 cm3 mol?1 s?1 for the recombination of CF3 radicals, is given by where k2 is in cm3 mol?1 s?1 and E is in J mol?1. These results are compared with those previously reported, and the following best value for k2 is recommended:   相似文献   

14.
15.
In the title complexes the cis-benzenetrioxide acts as tridentate ligand, allowing for octahedral and unusual tetracapped trigonal prismatic coordination (TECTP).  相似文献   

16.
The bonding problem in borazine (B3N3H6), boroxine (B3O3H3), and carborazine (B2N2C2H6) is successfully addressed through the consideration of the excited states of the constituent fragments, namely BH( ), NH( ), and CH( ). We propose the participation of resonant structures for all three species that help to explain the experimental findings. A discussion on the chemical pattern of the parental molecule benzene (C6H6) helps to make coherent the whole bonding analysis on the titled species.  相似文献   

17.
利用水热合成技术成功制备出一种新型多钒硼氧化合物, 用X射线单晶衍射分析技术对其晶体结构和分子结构进行了确定。结果表明在该化合物中多钒硼氧阴离子具有一个新颖的三明治结构。上下两个结构单元都是由六个VO5四角锥交替地通过顺式和反式共边的方式连接起来构成的一个钒氧三角形结构。中间的结构单元是由BO3平面三角形和BO4四面体以共角的方式相互连接形成的一个折叠型的B18O36(OH)6环。三明治结构中层与层之间通过桥氧相连。一个水分子处于它的核心位置上,与每个VO5四角锥中的钒原子都保持几乎相等的距离。该化合物及其晶体中存在着丰富的化学结构和成键信息,同时也有作为氧化还原反应催化剂的潜能。  相似文献   

18.
19.
20.
A model complex optical potential (composed of static, exchange, polarization and absorption terms) is employed to calculate the total (elastic and inelastic) electron-atom scattering cross sections from the corresponding atomic wave function at the Hartree-Fock level. The total cross sections (TCS) for electron scattering by their corresponding molecules (C2H2, C2H4, C2H6, C3H6, C3H8 and C4H8) are firstly obtained by the use of the additivity rule over an incident energy range of 10–1000 eV. The qualitative molecular results are compared with experimental data and other calculations wherever available, good agreement is obtained in intermediate-and high-energy region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号