首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermal decomposition rate constant of AIBN (kd) in N, N-dimethylformamide (DMF)/acrylonitrile (AN) mixtures of various compositions at 60°C is studied. The kd value is (6.45 ± 0.3) × 10−4 min−1 for pure DMF and (7.20 ± 0.3) × 10−4 min−1 for pure acrylonitrile. The kd values of DMF/AN mixtures were found to be dependent on the mixture composition. This dependence is not a linear function of the monomer mole fraction (xM), but has a minimum at ca. 70 mol % of AN. The relationship kd = f(xM) has been interpreted on the basis of the hypothesis of initiator solvation by monomer AN and solvent DMF. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
Chain transfer constants to monomer have been measured by an emulsion copolymerization technique at 44°C. The monomer transfer constant (ratio of transfer to propagation rate constants) is 1.9 × 10?5 for styrene polymerization and 0.4 × 10?5 for the methyl methacrylate reaction. Cross-transfer reactions are important in this system; the sum of the cross-transfer constants is 5.8 × 10?5. Reactivity ratios measured in emulsion were r1 (styrene) = 0.44, r2 = 0.46. Those in bulk polymerizations were r1 = 0.45, r2 = 0.48. These sets of values are not significantly different. Monomer feed compcsition in the polymerizing particles is the same as in the monomer droplets in emulsion copolymerization, despite the higher water solubility of methyl methacrylate. The equilibrium monomer concentration in the particles in interval-2 emulsion polymerization was constant and independent of monomer feed composition for feeds containing 0.25–1.0 mole fraction styrene. Radical concentration is estimated to go through a minimum with increasing methyl methacrylate content in the feed. Rates of copolymerization can be calculated a priori when the concentrations of monomers in the polymer particles are known.  相似文献   

3.
Apparent transfer constants have been determined for styrene, methyl methacrylate vinyl acetate, and diethyl maleate polymerized in N-allylstearamide at 90°C. Regression coefficients for transfer were: methyl methacrylate, 0.301 × 10?3; styrene, with no added initiator, 0.582 × 10?3; styrene, initiated with benzoyl peroxide, 0.830 × 10?3; vinyl acetate, 62.01 × 10?3; and diethyl maleate, 2.24 × 10?3. Rates of polymerization were retarded for both styrene and methyl methacrylate. Vinyl monomer and comonomer disappearance followed an increasing exponential dependence on both initiator and monomer concentration. Although degradative chain transfer probably caused most of the retardation, the cross-termination effect was not eliminated as a contribution factor. Rates for the vinyl acetate copolymerization were somewhat retarded, even though initiator consumption was large because of induced decomposition. The kinetic and transfer data indicated that the reactive monomers added radicals readily, but that rates were lowered by degradative chain transfer. Growing chains were terminated at only moderate rates of transfer. Unreactive monomers added radicals less easily, producing reactive radicals, which transferred rapidly, so that molecular weights were lowered precipitously. Although induced initiator decomposition occurred, rates were still retarded by degradative chain transfer. A simple empirical relation was found between the reciprocal number-average degree of polymerization, 1/X?n1 and the mole fraction of allylic comonomer entering the copolymer F2, which permitted estimation of the molecular weight of copolymers of vinyl monomers with allylic comonomers. This equation should be applicable when monomer transfer constants for each homopolymer are known and when osmometric molecular weights of one or two copolymers of low allylic content have been determined.  相似文献   

4.
The thermal decomposition rate constant (kd ) of 2,2′‐azoisobutyronitrile in acrylonitrile (AN; monomer A)–methyl methacrylate (MM; monomer B) comonomer mixtures in N,N‐dimethylformamide (DMF) as a function of the comonomer mixture composition and its concentration in the solvent at 60 °C was studied. The dependences kd = f(xA ,C) [xA (mole fraction of A in the comonomer mixture) = A/(A + B) = A/C, where C is the comonomer mixture concentration] have a different course as a function of C: from a curve kd = f(xA ) approaching the straight line (C = 2 mol · dm−3) to a convex curve possessing a maximum at a point xA = 0.7 (C = 4 mol · dm−3) to a curve with a flattened wide maximum within the range of xA = 0.2–0.8 (C = 7 mol · dm−3) to a curve with the shape of a lying s (C = 9 mol · dm−3). All the courses of the experimental dependences kd = f(xA ,C) can be explained with a hypothesis of initiator solvation by the comonomers AN and MM and the solvent DMF. The existing solvated forms, their relative stability constants, the thermal decomposition rate constants, and the relative contents in the system were determined. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2156–2166, 2000  相似文献   

5.
Sodium thiophenoxide initiated the polymerization of methyl methacrylate in polar aprotic solvents (DMF, DMSO, HMPA). The active species that initiated the polymerization of the monomer was found by spectrophotometric measurements and by the sodium fusion method to be sodium thiophenoxide itself. The activation energy for the polymerization of the monomer in DMF solvent obtained was E = 3.4 kcal/mole below 30°C, and E = ?3.3 kcal/mole above the temperature. The phenomena were reasoned as the result of the formation of two active species: a solvent-separated ion pair and a contact ion pair. The effects of counterions on the reactivity of thiophenoxide increased with increasing electropositivity of the metals: Li < Na < K. Sodium phenoxide, the oxygen analog of thiophenoxide, was also found to initiate the polymerization of the monomer in the solvents. The relative reactivity of thiophenoxide to phenoxide for the monomer in HMPA at 30°C was thus determined: phenyl-SNa > phenyl-ONa. The relative effect of the polar aprotic solvents on the reactivity of thiophenoxide was also as follows: HMPA > DMF > DMSO. The kinetic studies were made by the graphical evaluation of rate constants. The following results were obtained for the monomer at 20°C in DMF solvent: Kp = 3.5 × 102 1./mole-hr and Kt = 9.8 × 10?2/hr.  相似文献   

6.
Solution polymerization of MMA, with pyridine as the solvent and BZ2O2 and AIBN as thermal initiators, was studied kinetically at 60°C. The monomer exponent varied from 0.45 to 0.91 as [BZ2O2] was increased from 1 × 10?2 to 30 × 10?2 mole/liter in a concentration range of 8.3-4.6 mole/liter for MMA. For AIBN-initiated polymerization the monomer exponent remained constant at 0.69 as [AIBN] varied from 0.4 × 10?2 to 1.0 × 10?2 mole/liter in the same concentration range for MMA. The k2p/kt Value increased in both cases with an increase in pyridine concentration in the system. This was explained in terms of an increase in the kp value, which was due presumably to the increased reactivity of the chain radicals by donor-acceptor interaction between the molecules of solvent pyridine and propagating PMMA radicals and in terms of lowering the kt value for the diffusion-controlled termination reaction due to an increase in the medium viscosity and pyridine content.  相似文献   

7.
The decomposition rate constant (kd) of pinacolone diperoxide (PDP, 3,6‐diterbutyl‐3,6‐dimethyl‐1,2,4,5‐tetraoxacyclohexane) in methyl methacrylate (MMA) is determined by the kinetic study of its thermal decomposition at temperatures from 110 °C to 140 °C. The calculated kd values for PDP are higher than the corresponding values previously determined and reported for diethyl ketone triperoxide (DEKTP, 3,3,6,6,9,9‐hexaethyl‐1,2,4,5,7,8‐hexaoxacyclononane), for example, at 140 °C the kd for PDP is 75.4 × 10?5 s?1, while for DEKTP, it is 50.6 × 10?5 s?1. The difference in the kd between 130 °C and 140 °C indicates that the decomposition mechanism, sequential and/or concerted, is a function of temperature. The conformations of both initiators justify the higher kd for PDP in MMA than DEKTP, where one single conformer is found for PDP, whereas 212 conformers are found for DEKTP. Bulk polymerization of MMA using PDP as the initiator reveals also the presence of an induction period, such as in DEKTP case. This work provides mechanistic insights into the interactions among the bifunctional cyclic peroxide PDP and the MMA monomer and their influence on the polymerization kinetics. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 997–1007  相似文献   

8.
Polymerization of acrylamide was thermally initiated by the oxygenated cobalt( III ) triethylenetetramine complex. Rate, conversion, and molecular weights obtained are favorable comparable to those initiated by K2S2O4 and K2S2O8 initiators. An induction period is about 3 mins. The value of Kdf at 60°C is 6.75 × 10?5 s?1, and the chain transfer to monomer constant is 1.2 × 10?5. The rate dependence obtained are a half order on the initiator concentration and a 1.38 order on the monomer concentration. The mole fraction of combination termination occurred in the overall termination reactions evaluated is 0.746.  相似文献   

9.
A kinetic study of radical polymerization of vinyl mercaptobenzothiazole (VMBT) with α,α′-azobisisobutyonitrile (AIBN) at 60°C was carried out. The rate of polymerization (Rp) was found to be expressed by the rate equation: Rp = k[AIBN]0.5 [VMBT]1.0, indicating that the polymerization of this monomer proceeds via an ordinary radical mechanism. The apparent activation energy for overall polymerization was calculated to be 20.9 kcal/mole. Moreover, this monomer was copolymerized with methyl methacrylate, acrylonitrile, vinyl acetate, phenyl vinyl sulfide, maleic anhydride, and fumaronitrile at 60°C. From the results obtained, the copolymerization parameters were determined and discussed.  相似文献   

10.
The methacrylate monomer, 2-[(5-methylisoxazol-3-yl)amino]-2-oxo-ethyl methacrylate (IAOEMA), was synthesized by reacting 2-chloro-N-(5-methylisoxazol)acetamide dissolved in acetonitrile with sodium methacrylate in the presence of triethylbenzylammoniumchloride (TEBAC). The free-radical-initiated copolymerization of IAOEMA, with styrene (ST) and methyl methacrylate (MMA) was carried out in dimethylsulphoxide (DMSO) solution at 65 °C using 2,2-azobisisobutyronitrile (AIBN) as an initiator with different monomer-to-monomer ratios in the feed. The monomer (IAOEMA) and copolymers were characterized by FTIR, 1H- and 13C-NMR spectral studies. The copolymer composition was evaluated by nitrogen content in polymers led to the determination of reactivity ratios. The reactivity ratios of the monomers were determined by the application of Fineman-Ross and Kelen-Tüdös methods. The analysis of reactivity ratios revealed that ST and MMA are more reactive than IAOEMA, and copolymers formed are statisticalle in nature. The molecular weights (Mw and Mn) and polydispersity index of the polymers were determined using gel permeation chromagtography. Glass transition temperatures of the copolymers were found to increase with an increase in the mole fraction of IAOEMA in the copolymers. The apparent thermal decomposition activation energies (Ed) were calculated by Ozawa method using the SETARAM Labsys TGA thermobalance.  相似文献   

11.
The polymerization of acrylonitrile (AN) initiated by 1,4-dimethyl-1,4-bis(p-nitrophenyl)-2-tetrazene (Ie) was studied in dimethylformamide (DMF) at high temperature. The polymerization proceeds by a radical mechanism. The rate of polymerization is proportional to [Ie]0.64 and [AN]1.36. The overall activation energy for the polymerization is 21.5 kcal/mole within the temperature range of 115-130°C. The chain transfer of Ie was also undertaken over the temperature range of 120-135°C. The activation parameters for the decomposition of Ie at 120°C are kd = 2.78 × 10?6 sec?1, ΔH? = 40.8 kcal/mole, and ΔS? = 19.5 cal/mole-deg, respectively.  相似文献   

12.
The aqueous polymerization of methyl methacrylate initiated by the redox system K2S2O8-ascorbic acid has been studied at 35°C under the influence of oxygen. The rate of polymerization increases with increasing ascorbic acid concentration at low activator concentration, remains constant within the range 4.375 × 10?3 to 11.25 × 10?3 mole/liter, and at higher ascorbic acid concentration again decreases. The rate varies linearly with monomer concentration. The initial rate and the limiting conversion increase with increasing polymerization temperature. Organic solvents (water-miscible only) and small amounts of neutral salts like KC1 and Na2SO4 depress the initial rate and the maximum conversion. The addition of small amounts of salts like Cu2+ and Mn2+ increases the initial rate, but no appreciable increase in the limiting conversion is observed.  相似文献   

13.
The polymerization of methyl methacrylate was carried out in water at various concentrations of sodium bisulfite, ferric oxide, and methyl methacrylate at 30, 40, and 50°C. The effect of ferric oxide on the rate of polymerization was studied at 50°C. Rates of polymerization increased in the presence of ferric oxide. For example, the rate of polymerization increased from 3.4 × 10?5 mole/l.-sec to 11.8 × 10?5 mole/l.-sec when the ferric oxide concentration was varied from 0 to 15 g/l. water. The molecular weight of the polymer decreased from an average of 1.4 × 106 in the absence of ferric oxide to 2.8 × 105 when the ferric oxide was present. The variation of molecular weight of the polymers with temperature and conversion was studied. At a fixed conversion of 80%, the average molecular weight decreased from 3.4 × 105 at 30°C to 2.2 × 105 at 50°C. The average molecular weight was also found to increase with increasing monomer and initiator concentrations. It increased from 8.1 × 104 to 5.3 × 105 and from 3.4 × 105 to 8.9 × 105 as the initiator and monomer concentrations increased from 0.01 to 0.05 mole/l. and from 0.235 to 0.705 mole/l., respectively. The apparent energy of activation for the polymerization was found to be 15.6 and 9.7 kcal/mole in absence and in presence of ferric oxide, respectively.  相似文献   

14.
The polymerization of methyl methacrylate either by free radical or charge transfer mechanism has been studied in dimethyl sulphoxide at 60° in the presence of oxalic acid and hexakis dimethylsulphoxide iron(III) perchlorate, [Fe(DMSO)6](ClO4)3. Increased rate was noticed for 1:1 mole ratio of oxalic acid to Fe3+ for charge transfer polymerization; a well defined induction period was found for free radical polymerization in the same systems. Mechanisms for the two types of reaction are proposed. The rate constant for the interaction of poly(methyl methacrylate) radical with the iron-oxalate complex was found to be 1.52 × 105 l. mol?1 sec?1 at 60°.  相似文献   

15.
Using p,p'-dimethoxydiphenyldiazomethane (DMDM) as initiator, the polymerization of methyl methacrylate (MMA) in benzene or in bulk was carried out. The initial rate of polymerization, Rp, was found to be expressed by the following equation:

Rp = k[DMDM]0.53 [MMA]0.84

The polymerization was confirmed to proceed by a radical mechanism. The over-all activation energy for the polymerization in benzene was calculated as 19.3 kcal/mole. The rate of thermal decomposition of DMDM was also measured in benzene and the rate equation was obtained as follows:

kd (sec?1) = 1.0 × 1015 exp (?29.1 kcal/RT) (for 50-80°C)

Explanations of these observations are discussed in connection with those of the preceding papers.  相似文献   

16.
The solvation effect in the thermal decomposition of a radical initiator (AIBN) in monomer–solvent mixtures is discussed. Equations were derived which comprise the initiator decomposition constant as a function of the monomer mole fraction for chosen types of solvation. In addition, equations were deduced presenting the concentrations and partial relative decomposition rates for the solvated initiator species as a function of the monomer mole fraction. The equations obtained were compared to the experimental literature data and possible dependences of decomposition constants on monomer concentration were simulated for various solvated species. The simulated relationships were found to be straight lines, curves of saturated type (possessing a plateau), S-shaped curves, and maximum or minimum curves. © 1995 John Wiley & Sons, Inc.  相似文献   

17.
The polymerization of acrylamide initiated by an ascorbic acid–peroxydisulfate redox system was studied in aqueous solution at 35 ± 0.2°C in the presence of air. The concentrations studied were [monomer] = (2.0–15.0) × 10?2 mole/liter; [peroxydisulfate] = (1.5–10.0) × 10?3 mole/liter; and [ascorbic acid] = (2.84–28.4) × 10?4 mole/liter; temperatures were between 25–50°C. Within these ranges the initial rate showed a half-order dependence on peroxydisulfate, a first-order dependence on an initial monomer concentration, and a first-order dependence on a low concentration of ascorbic acid [(2.84–8.54) × 10?4 mole/liter]. At higher concentrations of ascorbic acid the rate remained constant in the concentration range (8.54–22.72) × 10?4 mole/liter, then varied as an inverse halfpower at still higher concentrations of ascorbic acid [(22.72–28.4) × 10?4 mole/liter]. The initial rate increased with an increase in polymerization temperature. The overall energy of activation was 12.203 kcal/mole in a temperature range of 25–50°C. Water-miscible organic solvents depressed the initial rate and the limiting conversion. The viscometric average molecular weight increased with an increase in temperature and initial monomer concentration but decreased with increasing concentration of peroxydisulfate and an additive, dimethyl formamide (DMF).  相似文献   

18.
The photopolymerization of vinyl monomers (methyl methacrylate and styrene) was investigated in the presence of chlorosilane compounds. It was found that these additives acted as photosensitizers. In the case of the photopolymerization of methyl methacrylate, the rate of polymerization was found to be proportional to the concentration of methyl methacrylate and to the square root of the chlorosilane concentration. The chain-transfer constants of these photosensitizers, SiCl4, CH3SiCl3, (CH3)2SiCl2, (CH3)3-SiCl, and (CH3)4Si, with ultraviolet irradiation were 25.6 × 10?3, 18.4 × 10?3, 17.5 × 10?3, 14.4 × 10?3 and 0.5 × 10?3, respectively, for methyl methacrylate.  相似文献   

19.
The thermal decomposition and the glass transition temperature Tg of poly(phenyl methacrylate) (PPhMA) and poly(cyclohexyl methacrylate) (PcHU) were studied with a differential scanning calorimeter (DSC). The undecomposed and decomposed polymers were analyzed by gel permeation chromatography (GPC) for molecular weight distributions and by DSC for changes in the thermal properties, e.g., Tg. For all values of weight-loss α, the thermal stability of the polymers follows the order: Poly-(methyl methacrylate) (PMMA) = PcHMA > poly(ethyl methacrylate) (PEMA) > PPhMA > poly(n-butyl methacrylate) (PnBuMA) > poly(isobutyl methacrylate) (PiBuMA). In the depolymerization reactions that occur during the isothermal decomposition of PPhMA, there is no specific preference for longer or shorter chains although a minor fraction of the volatilized fraction with an [Mbar]w 10?5 of 2.5 and an [Mbar] n |MX 10.?5 of 1.5 does undergo chain recombination yielding high molecular weight products with an Mw × 10?6 of 1.35 and an Mn × 10?6 of 1.0 to 1.23. In the case of PcHMA, depolymerizations did show a preference for longer chains. No chain recombination, however, was found to take place. Activation energy of decomposition for substituted poly-methacrylates follows the order: PnBuMA = PiBuMA >; PEMA >; PcHMA >; PMMA >; PPhMA. Tg e values of PPhMA samples varied from 362 K for undecomposed polymers to 396 K for a polymer treated at 300° C. The literature value of 383 K does fall within this range. In the case of PcHMA, an average Tge of 356 f 6.0 ± is not far removed from the reported value of 359 K.  相似文献   

20.
The aqueous polymerization of acrylamide initiated by the acidified potassium permanganate/mercaptosuccinic acid redox system was studied at 35 ± 0.2°C in nitrogen. In the studied range of activator concentration (2.0 × 10?3 to 6.25 ± 10?3 mole/liter) the polymerization rate remains unaffected. The initial rate of polymerization varies linearly with KMnO4 and acrylamide concentrations in the studied range. The activation energy was found to be 6.61 kcal/mole (27.63 kJ/mole) in the temperature range of 30–50°C. The molecular weight of polyacrylamide was found to be independent of [KMnO4] but increased with increasing monomer concentration. The effect of DMF on polymerization rate and molecular weight was also investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号