首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A dual-step cylinder is comprised of two cylinders of different diameters. A large diameter cylinder (D) with low aspect ratio (L/D) is attached to the mid-span of a small diameter cylinder (d). The present study investigates the effect of Reynolds number (ReD) and L/D on dual step cylinder wake development for D/d=2, 0.2≤L/D≤3, and two Reynolds numbers, ReD=1050 and 2100. Experiments have been performed in a water flume facility utilizing flow visualization, Laser Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV). The results show that vortex shedding occurs from both the large and small diameter cylinders for 1≤L/D≤3 at ReD=2100 and 2≤L/D≤3 at ReD=1050. At these conditions, large cylinder vortices predominantly form vortex loops in the wake and small cylinder vortices form half-loop vortex connections. At lower aspect ratios, vortex shedding from the large cylinder ceases, with the dominant frequency in the large cylinder wake attributed to the passage of vortex filaments connecting small cylinder vortices. At these lower aspect ratios, the presence of the large cylinder induces periodic vortex dislocations. Increasing L/D increases the frequency of occurrence of vortex dislocations and decreases the dominant frequency in the large cylinder wake. The identified changes in wake topology are related to substantial variations in the location of boundary layer separation on the large cylinder, and, consequently, changes in the size of the vortex formation region. The results also show that the Reynolds number has a substantial effect on wake vortex shedding frequency, which is more profound than that expected for a uniform cylinder.  相似文献   

2.
3.
The aerodynamics of thin, flat-plate wings of various planforms (rectangular, elliptical and Zimmerman) have been studied in free-to-roll experiments in a wind tunnel. Non-zero trim angles at low angles of attack, self-induced roll oscillations with increasing angle of attack and even autorotation in some cases were observed. The rectangular wings with round leading-edge had non-zero trim angles at low incidences due to the asymmetric development of the three-dimensional separation bubble at these low Reynolds numbers. With increasing angle of attack, the bubble increases in length and once reattachment is lost, large amplitude roll oscillations develop. The Strouhal number of the roll oscillations is of the order of 10−2, which is in the same range as those expected for small aircraft experiencing atmospheric gusts. Velocity measurements revealed that variations in the strength of the vortices drove the rolling motion. At the mean roll angle, because of the time lag in the strength of the vortices, an asymmetric flow is generated, which results in a net rolling moment in the direction of the rolling motion.  相似文献   

4.
Results are presented for flow-induced vibrations of a pair of equal-sized circular cylinders of low nondimensional mass (m*=10) in a tandem arrangement. The cylinders are free to oscillate both in streamwise and transverse directions. The Reynolds number, based on the free-stream speed and the diameter of the cylinders, D is 100 and the centre-to-centre distance between the cylinders is 5.5D. The computations are carried out for reduced velocities in the range 2≤U*≤15. The structural damping is set to zero for enabling maximum amplitudes of oscillation. A stabilized finite element method is utilized to carry out the computations in two dimensions. Even though the response of the upstream cylinder is found to be qualitatively similar to that of an isolated cylinder, the presence of a downstream cylinder is found to have significant effect on the behaviour of the upstream cylinder. The downstream cylinder undergoes very large amplitude of oscillations in both transverse and streamwise directions. The maximum amplitude of transverse response of the downstream cylinder is quite similar to that of a single cylinder at higher Re beyond the laminar regime. Lock-in and hysteresis are observed for both upstream and downstream cylinders. The downstream cylinder undergoes large amplitude oscillations even beyond the lock-in state. The phase between transverse oscillations and lift force suffers a 180 jump for both the cylinders almost in the middle of the synchronization regime. The phase between the transverse response of the two cylinders is also studied. Complex flow patterns are observed in the wake of the freely vibrating cylinders. Based on the phase difference and the flow patterns, the entire flow range is divided into five sub-regions.  相似文献   

5.
6.
Small elements of circular, square, triangular and thin-strip cross-sections are used to suppress vortex shedding from a rectangular cylinder of stream-wise to transverse scale ratio L/B=3.0 at Reynolds numbers in the range of Re=VB/ν=75–130, where V is the on-coming velocity of the stream, and ν is the kinematic viscosity. The relative transverse dimension of the small element b/B is fixed at 0.2. The results of numerical simulation and visualization experiment show that, vortex shedding from both sides of the cylinder can be suppressed and the fluctuating drag and lift of the cylinder can be greatly reduced, if the element is placed in a certain region referred to as the effective zone. Comparisons at a specific Reynolds number indicate that the square element produces the largest size of the effective zone, whereas the triangular element yields the smallest. Results also show that the effective zone for the square element shrinks with increasing Re and disappears at Re>130. Independent of element cross-section shape and Reynolds number, the center of the effective zone is always at X/B=2.5–3.0 and Y/B≈1.0. The mechanism of the suppression is discussed from the view points of velocity profile stability and stress distribution.  相似文献   

7.
Numerous methods have been developed to calculate the aerodynamic characteristics of wings of low aspect ratio in the case when there is flow separation from the wing edges. Among the methods based on direct solution of the three-dimensional Euler equations there are the method of discrete vortices [1, 2] and the panel method [3]. In addition, numerical and asymptotic methods [4, 5] based on the theory of slender bodies [6] are used. One of the most important shortcomings of this theory is the dependence of the flow pattern at a given section of the wing on only the upstream flow. The obtained solutions therefore contain no information about the influence of the trailing edge of the wing, on which, as is well known, the Chaplygin-Zhukovskii condition is satisfied. The aim of the present paper is to construct an asymptotic theory of higher approximation and a corresponding numerical method for calculating flow separation from wings of low aspect ratio in which this shortcoming is absent.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 141–147, July–August, 1982.  相似文献   

8.
9.
10.
The evolution of the planar vibrations of a rectangular piezoceramic plate as its aspect ratio is changed starting with 1 is studied. Experimental data are obtained using an integrated technique based on Meson’s circuit, Onoe’s circuit, and a piezotransformer transducer. As the aspect ratio increases (square plate becomes rectangular), the intensity of electromagnetic vibrations rapidly increases at the first longitudinal resonance and gradually decreases in the first radial mode. When the aspect ratio is changed so that the length of one of the plate sides remains constant, the resonant frequencies of all vibration modes change too __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 98–106, July 2007.  相似文献   

11.
12.
13.
Characteristic of the flow about wings of low aspect ratio with subsonic leading edges and bodies of revolution at angles of attack is the formation of spiral vortices as a result of rolling-up of the transverse flow, which separates near the wing leading edge and on the lateral generator of the body. The vortices, concentrated in a pair of free vortex cores, interact with the boundary layer, causing a complex flow pattern on the surface of the model in question.There are several methods which make it possible to study the flow about the model. Pickups may be used to measure the pressure field or the velocity field near the model. This technique has found wide application and was used for studying the flow pattern about wings and bodies of revolution at both subsonic and supersonic speeds (see, for example, [1–4]). However, this method is very tedious and, in addition, the probes always introduce disturbances into the flow, particularly for supersonic speeds.A visual picture of the vortex flow may be obtained in a towing basin by adding to the water metal powder in the suspended state, or by introducing filaments of colored liquid [1, 5].The vapor screen [6] and smoke [3] methods are also used for flow visualization.The boundary layer flow on the model may be studied with the aid of oil or evaporting coatings. These methods have been used in [1, 7] to study flow about wings and in [8] to study flow about circular cones.According to the studies presented in [9] of an electric discharge with the application of high voltage to electrodes located in an air stream, a stable glow occurs as a result of the prebreakdown discharge.The properties of the prebreakdown discharge have been used by the authors of the present paper to study visually the vortex flows (high voltage electric discharge method). This technique was used to obtain the trajectories of the vortex trails for low aspect ratio wings and circular cones mounted at various angles of attack in a stream with Mach number M=2 and Reynolds number R=0.9·106.In conclusion the author wishes to thank B. V. Kalachev, R. V. Bertyn, and E. D. Korolev for assistance in carrying out the experiments.  相似文献   

14.
Wrinkling analysis of a rectangular membrane with a single crease under shearing is performed to understand the wrinkle-crease interaction behaviors.The crease is considered by introducing the residual stresses from creasing and the effective modulus into the baseline configuration with assumed circular cross-sectional crease geometry.The wrinkling analysis of the creased membrane is then performed by using the direct perturb-force(DP) simulation technique which is based on our modified displacement components(MDC) method.Results reveal that the crease may influence the stress transfer path in the membrane and further change the wrinkling direction.The crease appears to improve the bending stiffness of the membrane which has an effective resistance on the wrinkling evolution.The effects of the crease orientation on wrinkle-crease interaction are studied toward the end of this paper.The results show that the wrinkling amplitude,wavelength,and direction increase as the crease orientation increases,and the wrinkling number decreases with the increasing crease orientation.These re-sults will be of great benefit to the analysis and the control of the wrinkles in the membrane structures.  相似文献   

15.
Results are presented for the numerical simulation of vortex-induced vibrations (VIVs) of a cylinder at low Reynolds numbers (Re). A stabilized space–time finite-element formulation is utilized to solve the incompressible flow equations in primitive variables. The cylinder, of low nondimensional mass (m*=10), is free to vibrate in, both, the transverse and in-line directions. To investigate the effect of Re and reduced natural frequency, Fn, two sets of computations are carried out. In the first set of computations the Reynolds number is fixed (=100) and the reduced velocity (U*=1/Fn) is varied. Hysteresis, in the response of the cylinder, is observed at the low- as well as high-end of the range of reduced velocity for synchronization/lock-in. In the second set of computations, the effect of Reynolds number (50Re500) is investigated for a fixed reduced velocity (U*=4.92). The effect of the Reynolds number is found to be very significant for VIVs. While the vortex-shedding mode at low Re is 2S (two single vortices shed per cycle), at Re300 and larger, the P+S mode of vortex shedding (a single vortex and one pair of counter-rotating vortices are released in each cycle of shedding) is observed. This is the first time that the P+S mode has been observed for a cylinder undergoing free vibrations. This change of vortex-shedding mode is hysteretic in nature and results in a very large increase in the amplitude of in-line oscillations. Since the flow ceases to remain two-dimensional beyond Re200, it remains to be seen whether the P+S mode of shedding can actually be observed in reality for free vibrations.  相似文献   

16.
The unsteady aerodynamic thrust and aeroelastic response of a two-dimensional membrane airfoil under prescribed harmonic motion are investigated computationally with a high-order Navier–Stokes solver coupled to a nonlinear membrane structural model. The effects of membrane prestress and elasticity are examined parametrically for selected plunge and pitch–plunge motions at a chord-based Reynolds number of 2500. The importance of inertial membrane loads resulting from the prescribed flapping is also assessed for pure plunging motions. This study compares the period-averaged aerodynamic loads of flexible versus rigid membrane airfoils and highlights the vortex structures and salient fluid–membrane interactions that enable more efficient flapping thrust production in low Reynolds number flows.  相似文献   

17.
In this study, the vortex-induced vibrations of a cylinder near a rigid plane boundary in a steady flow are studied experimentally. The phenomenon of vortex-induced vibrations of the cylinder near the rigid plane boundary is reproduced in the flume. The vortex shedding frequency and mode are also measured by the methods of hot film velocimeter and hydrogen bubbles. A parametric study is carded out to investigate the influences of reduced velocity, gap-to-diameter ratio, stability parameter and mass ratio on the amplitude and frequency responses of the cylinder. Experimental results indicate: (1) the Strouhal number (St) is around 0.2 for the stationary cylinder near a plane boundary in the sub-criti- cal flow regime; (2) with increasing gap-to-diameter ratio (eo/D), the amplitude ratio (A/D) gets larger but frequency ratio (f/fn) has a slight variation for the case of larger values of eo/D(eo/D 〉 0.66 in this study); (3) there is a clear difference of amplitude and frequency responses of the cylin- derbetween the larger gap-to-diameter ratios (e0/D 〉 0.66) and the smaller ones (e0/D 〈 0.3); (4) the vibration of the cylinder is easier to occur and the range of vibration in terms of Vr number becomes more extensive with decrease of the stability parameter, but the frequency response is affected slightly by the stability parameter; (5) with decreasing mass ratio, the width of the lock-in ranges in terms of Vr and the frequency ratio (f/fn) become larger.  相似文献   

18.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

19.
This study elucidates the relation between wake vortex shedding and aerodynamic force fluctuations for a low Reynolds number wing from time resolved particle image velocimetry (TR-PIV) experimental measurements. The results reveal a periodic lift and drag variation within the shedding cycle and resolve the frequencies of those fluctuations from a proper orthogonal decomposition (POD) and power spectral density (PSD) analysis. To show the effect of vortex shedding on the body force fluctuations, the evolution of instantaneous aerodynamic forces is compared to the pressure field of the fluid flow and to the vortical structures in the wake of the airfoil. A six step model describing the vortex-force relation is proposed. It shows that changes in lift such as maximum lift and minimum lift are associated with the detachment of a vortex. It also shows that the minimum or local minimum drag value is obtained at the onset formation of a vortex on the airfoil wake. Similarly, the maximum or local maximum drag is obtained at the onset formation of the saddle on the airfoil wake. The model further explains the asymmetry observed in the unsteady drag force evolution. The model can be used to optimize flow control and fluid-structure interaction applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号