首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Opacity is an important ingredient of the evolution of stars. The calculation of opacity coefficients is complicated by the fact that the plasma contains partially ionized heavy ions that contribute to opacity dominated by H and He. Up to now, the astrophysical community has greatly benefited from the work of the contributions of Los Alamos [1], Livermore [2], [2a] and [2b] and the Opacity Project (OP) [3]. However unexplained differences of up to 50% in the radiative forces and Rosseland mean values for Fe have been noticed for conditions corresponding to stellar envelopes. Such uncertainty has a real impact on the understanding of pulsating stellar envelopes, on the excitation of modes, and on the identification of the mode frequencies. Temperature and density conditions equivalent to those found in stars can now be produced in laboratory experiments for various atomic species. Recently the photo-absorption spectra of nickel and iron plasmas have been measured during the LULI 2010 campaign, for temperatures between 15 and 40 eV and densities of ∼3 mg/cm3. A large theoretical collaboration, the “OPAC”, has been formed to prepare these experiments. We present here the set of opacity calculations performed by eight different groups for conditions relevant to the LULI 2010 experiment and to astrophysical stellar envelope conditions.  相似文献   

2.
We present an optimal uncertainty quantification (OUQ) protocol for systems that are characterized by an existing physics-based model and for which only legacy data is available, i.e., no additional experimental testing of the system is possible. Specifically, the OUQ strategy developed in this work consists of using the legacy data to establish, in a probabilistic sense, the level of error of the model, or modeling error, and to subsequently use the validated model as a basis for the determination of probabilities of outcomes. The quantification of modeling uncertainty specifically establishes, to a specified confidence, the probability that the actual response of the system lies within a certain distance of the model. Once the extent of model uncertainty has been established in this manner, the model can be conveniently used to stand in for the actual or empirical response of the system in order to compute probabilities of outcomes. To this end, we resort to the OUQ reduction theorem of Owhadi et al. (2013) in order to reduce the computation of optimal upper and lower bounds on probabilities of outcomes to a finite-dimensional optimization problem. We illustrate the resulting UQ protocol by means of an application concerned with the response to hypervelocity impact of 6061-T6 Aluminum plates by Nylon 6/6 impactors at impact velocities in the range of 5–7 km/s. The ability of the legacy OUQ protocol to process diverse information on the system and its ability to supply rigorous bounds on system performance under realistic—and less than ideal—scenarios demonstrated by the hypervelocity impact application is remarkable.  相似文献   

3.
Two-phase flow measurements were carried out using a resistive void fraction meter coupled to a venturi or orifice plate. The measurement system used to estimate the liquid and gas mass flow rates was evaluated using an air–water experimental facility. Experiments included upward vertical and horizontal flow, annular, bubbly, churn and slug patterns, void fraction ranging from 2% to 85%, water flow rate up to 4000 kg/h, air flow rate up to 50 kg/h, and quality up to almost 10%. The fractional root mean square (RMS) deviation of the two-phase mass flow rate in upward vertical flow through a venturi plate is 6.8% using the correlation of Chisholm (D. Chisholm, Pressure gradients during the flow of incompressible two-phase mixtures through pipes, venturis and orifice plates, British Chemical Engineering 12 (9) (1967) 454–457). For the orifice plate, the RMS deviation of the vertical flow is 5.5% using the correlation of Zhang et al. (H.J. Zhang, W.T. Yue, Z.Y. Huang, Investigation of oil–air two-phase mass flow rate measurement using venturi and void fraction sensor, Journal of Zhejiang University Science 6A (6) (2005) 601–606). The results show that the flow direction has no significant influence on the meters in relation to the pressure drop in the experimental operation range. Quality and slip ratio analyses were also performed. The results show a mean slip ratio lower than 1.1, when bubbly and slug flow patterns are encountered for mean void fractions lower than 70%.  相似文献   

4.
The main objective of this paper is to develop a generalized finite element formulation of stress integration method for non-quadratic yield functions and potentials with mixed nonlinear hardening under non-associated flow rule. Different approaches to analyze the anisotropic behavior of sheet materials were compared in this paper. The first model was based on a non-associated formulation with both quadratic yield and potential functions in the form of Hill’s (1948). The anisotropy coefficients in the yield and potential functions were determined from the yield stresses and r-values in different orientations, respectively. The second model was an associated non-quadratic model (Yld2000-2d) proposed by Barlat et al. (2003). The anisotropy in this model was introduced by using two linear transformations on the stress tensor. The third model was a non-quadratic non-associated model in which the yield function was defined based on Yld91 proposed by Barlat et al. (1991) and the potential function was defined based on Yld89 proposed by Barlat and Lian (1989). Anisotropy coefficients of Yld91 and Yld89 functions were determined by yield stresses and r-values, respectively. The formulations for the three models were derived for the mixed isotropic-nonlinear kinematic hardening framework that is more suitable for cyclic loadings (though it can easily be derived for pure isotropic hardening). After developing a general non-associated mixed hardening numerical stress integration algorithm based on backward-Euler method, all models were implemented in the commercial finite element code ABAQUS as user-defined material subroutines. Different sheet metal forming simulations were performed with these anisotropic models: cup drawing processes and springback of channel draw processes with different drawbead penetrations. The earing profiles and the springback results obtained from simulations with the three different models were compared with experimental results, while the computational costs were compared. Also, in-plane cyclic tension–compression tests for the extraction of the mixed hardening parameters used in the springback simulations were performed for two sheet materials.  相似文献   

5.
贝叶斯可靠性方法是处理不完备信息条件下结构可靠性问题的有效途径之一。在实际应用中,由于可靠性分析的计算量较大,常须采用各种近似替代模型以提高计算效率。传统的替代模型方法是对结构的功能函数予以近似建模。这种方法不易定量考虑模型误差对可靠性分析的影响,且难以应用于诸如功能函数不连续和失效域不连通等情况。为此,本文提出一种基于高斯过程分类的替代模型,直接辨识结构的极限状态曲面,并将其应用于结构贝叶斯可靠性分析之中。分析了替代模型不确定性对可靠性预测结果的影响,给出了失效概率分布参数的方差算式,进而提出了改善模型精度的补充采样准则。通过算例验证了方法的适用性和有被性.  相似文献   

6.
B. F. Nogueira  T. G. Ritto 《Meccanica》2018,53(11-12):3047-3060
The aim of this paper is to investigate the influence of uncertainties on the torsional vibration of drill-strings, in order to find out which uncertainty affects most significantly the torsional stability. The unstable torsional behavior is commonly associated to polycrystalline diamond compact bits, and manifests itself in the form of stick-slip oscillations. The stick-slip is a severe type of self-excited vibration characterized by large fluctuations in the rotation of the bit. It not only increases the bit wear, but also can cause drill-string failures. The analysis were done using a mathematical model of the drill-string based on classical torsion theory discretized by means of the finite element method. The bit-rock torque was included in the model as a nonlinear boundary condition at the bottom end of the drill-string. The values of the model parameters are typical values of a real drilling situation, which are subject to a high degree of uncertainty, what justifies a stochastic analysis. We have built probability distributions for the uncertain parameters and used Monte Carlo method to obtain the stochastic stability maps.  相似文献   

7.
在实际工程中, 广泛存在大量的不确定性信息, 直接或间接影响着工程结构形式设计、结构性能评估与预测以及在役结构损伤识别等工作的开展与决策. 这些多源不确定性信息往往需要用多种不同的不确定性量化模型加以描述; 与此同时, 不确定性变量在使用过程中可能随时间变化且难以直接测量, 需要间接根据性能测试信息在使用工程中更新不确定性量化模型. 为兼顾上述两个问题, 本文基于等概率变换原则提出了一种P-CS (probability-convex set) 不确定性量化模型, 该模型将不确定性变量用概率随机变量与非概率凸集变量组合表征, 可统一表达概率模型、非概率模型以及非精确概率模型, 实现多源、多类型不确定性的统一量化. 本文进一步基于贝叶斯理论提出了一种针对该P-CS不确定性量化模型的性能数据驱动更新方法. 该更新方法根据性能测试数据信息更新P-CS不确定性量化模型参数取值的信度分布, 从而根据后验信度分布计算得出当前P-CS不确定性量化模型参数集合. 通过数值算例详述了P-CS不确定性量化模型的构建方法与其概率、非概率特性, 并验证了性能数据驱动更新P-CS模型方法的适用性.   相似文献   

8.
Computational fluid dynamics (CFD) has been widely used to study the hydrodynamics of gas–solid fluidization; however, its applications in liquid–solid fluidization are relatively rare. In this study, CFD simulations of a liquid–solid fluidized bed are carried out, focusing on the effect of drag correlation and added mass force on the hydrodynamics of liquid–solid fluidization. It is shown that drag correlation has a significant effect on the simulation results and the correlation proposed by Beetstra et al. (2007) gives the best agreement with experimental data. We further show that the added mass force does play an important role in CFD simulation of liquid–solid fluidization, and therefore should not be ignored in CFD simulations.  相似文献   

9.
Turbulent kinetic energy (TKE) budget measurements were conducted for a symmetric turbulent planar wake flow subjected to constant zero, favorable, and adverse pressure gradients. The purpose of this study is to clarify the flow physics issues underlying the demonstrated influence of pressure gradient on wake development, and provide experimental support for turbulence modeling. To ensure the reliability of these notoriously difficult measurements, the experimental procedure was carefully designed on the basis of an uncertainty analysis. Three different approaches were applied for the estimate of the dissipation term. An approach for the determination of the pressure diffusion term together with correction of the bias error associated with the dissipation estimate is proposed and validated with the DNS results of Moser et al (J Fluid Mech (1998) 367:255–289). This paper presents the results of the turbulent kinetic energy budget measurement and discusses their implications for the development of strained turbulent wakes.An erratum to this article can be found at  相似文献   

10.
The flow of a 5.0 wt.% solution of polyisobutylene in tetradecane through a planar 4 : 1 contraction exhibiting a shear thinning viscosity is simulated using the flow-type sensitive quasi-Newtonian fluid model. The shear viscosity is fitted by the Giesekus model, which, with the chosen parameters, leads to an extension thickening elongational viscosity. The stress and velocity fields of the numerical simulations are compared with the experimental results of Quinzani et al. [J. Non-Newtonian Fluid Mech. 52 (1994) 1–36] and the numerical results of the viscoelastic simulation using the Giesekus model of Azaiez et al. [J. Non-Newtonian Fluid Mech. 62 (1996) 253–277]. It can be shown that the quasi-Newtonian fluid qualitatively predicts the essential features of the flow in the vicinity of the contraction.  相似文献   

11.
This study proposes an improved physical model to predict sand deposition at high temperature in gas turbine components. This model differs from its predecessor (Sreedharan and Tafti, 2011) by improving the sticking probability by accounting for the energy losses during particle-wall collision based on our previous work (Singh and Tafti, 2013). This model predicts the probability of sticking based on the critical viscosity approach and collision losses during a particle–wall collision. The current model is novel in the sense that it predicts the sticking probability based on the impact velocity along with the particle temperature. To test the model, deposition from a sand particle laden jet impacting on a flat coupon geometry is computed and the results obtained from the numerical model are compared with experiments (Delimont et al., 2014) conducted at Virginia Tech, on a similar geometry and flow conditions, for jet temperatures of 950 °C, 1000 °C and 1050 °C. Large Eddy Simulations (LES) are used to model the flow field and heat transfer, and sand particles are modeled using a discrete Lagrangian framework. Results quantify the impingement and deposition for 20–40 μm sand particles. The stagnation region of the target coupon is found to experience most of the impingement and deposition. For 950 °C jet temperature, around 5% of the particle impacting the coupon deposit while the deposition for 1000 °C and 1050 °C is 17% and 28%, respectively. In general, the sticking efficiencies calculated from the model show good agreement with the experiments for the temperature range considered.  相似文献   

12.
The relaxation spectrum is estimated from dynamic experiments using Bayesian analysis and a new regularization constraint. In the Bayesian framework, a probability can be calculated for each estimate of the spectrum. This offers several advantages; (1) an optimal estimate of the relaxation spectrum may be calculated as the mean of a large number of estimates, and (2) reliable errors for the optimal estimate can be provided using the deviation of all estimates from the mean. Furthermore, the Bayesian approach (3) gives an estimate of the overall noise level of the experiment, which is usually an important but unknown parameter for the calculation of relaxation spectra from dynamic experiments by indirect methods (determining the regularization parameter), and finally, (4) the information content in a given set of experimental data can be quantified. The validity of the Bayesian approach is demonstrated using simulated data.  相似文献   

13.
In the present study, quasi-diabatic two-phase flow pattern visualizations and measurements of elongated bubble velocity, frequency and length were performed. The tests were run for R134a and R245fa evaporating in a stainless steel tube with diameter of 2.32 mm, mass velocities ranging from 50 to 600 kg/m2 s and saturation temperatures of 22 °C, 31 °C and 41 °C. The tube was heated by applying a direct DC current to its surface. Images from a high-speed video-camera (8000 frames/s) obtained through a transparent tube just downstream the heated sections were used to identify the following flow patterns: bubbly, elongated bubbles, churn and annular flows. The visualized flow patterns were compared against the predictions provided by Barnea et al. (1983) [1], Felcar et al. (2007) [10], Revellin and Thome (2007) [3] and Ong and Thome (2009) [11]. From this comparison, it was found that the methods proposed by Felcar et al. (2007) [10] and Ong and Thome (2009) [1] predicted relatively well the present database. Additionally, elongated bubble velocities, frequencies and lengths were determined based on the analysis of high-speed videos. Results suggested that the elongated bubble velocity depends on mass velocity, vapor quality and saturation temperature. The bubble velocity increases with increasing mass velocity and vapor quality and decreases with increasing saturation temperature. Additionally, bubble velocity was correlated as linear functions of the two-phase superficial velocity.  相似文献   

14.
A verification and validation procedure for yacht sail aerodynamics is presented. Guidelines and an example of application are provided. The grid uncertainty for the aerodynamic lift, drag and pressure distributions for the sails is computed. The pressures are validated against experimental measurements, showing that the validation procedure may allow the identification of modelling errors. Lift, drag and L2 norm of the pressures were computed with uncertainties of the order of 1%. Convergence uncertainty and round‐off uncertainty are several orders of magnitude smaller than the grid uncertainty. The uncertainty due to the dimension of the computational domain is computed for a flat plate at incidence and is found to be significant compared with the other uncertainties. Finally, it is shown how the probability that the ranking between different geometries is correct can be estimated knowing the uncertainty in the computation of the value used to rank. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
Synthetic fiber ropes are characterized by a very complex architecture and a hierarchical structure. Considering the fiber rope architecture, to pass from fiber to rope structure behavior, two scale transition models are necessary, used in sequence: one is devoted to an assembly of a large number of twisted components (multilayered), whereas the second is suitable for a structure with a central straight core and six helical wires (1 + 6). The part I of this paper first describes the development of a model for the static behavior of a fibrous structure with a large number of twisted components. Tests were then performed on two different structures subjected to axial loads. Using the model presented here the axial stiffness of the structures has been predicted and good agreement with measured values is obtained. A companion paper (Ghoreishi, S.R. et al., in press. Analytical modeling of synthetic fiber ropes, part II: A linear elastic model for 1 + 6 fibrous structures, International Journal of Solids and Structures, doi:10.1016/j.ijsolstr.2006.08.032) presents the second model to predict the mechanical behavior of a 1 + 6 fibrous structure.  相似文献   

16.

The motion of a slender, clamped-free, imperfect, electrically actuated microbeam is investigated. Special attention is given to the influence of imperfections and noise on the bifurcations and instabilities of the structure, a problem not tackled in the previous literature on the subject. To this end, a geometrically nonlinear theory is adopted for the microbeam retaining geometric nonlinear terms up to the third order and considering in a consistent way the effect of initial geometric imperfections. Also, additive white noise is considered to model forcing uncertainties, and the Galerkin discretization method, using as interpolating functions the linear vibration modes, is used to obtain a modal stochastic differential equation of Itô type, which is solved by the stochastic Runge–Kutta method. A parametric analysis clarifies the influence of geometric imperfections and noise level on the natural frequencies, resonance curves, and pull-in instability. Additionally, the global dynamics is examined through the generalized cell mapping, showing the effects of uncertainties on the attractor’s probability density functions and basins of attraction.

  相似文献   

17.
This paper deals with the problem of a pipe conveying fluid of interest in several engineering applications, such as micro-systems or drill-string dynamics. The deterministic stability analysis developed by Paidoussis and Issid (1974) is extended to the case for which there are model uncertainties induced by modeling errors in the computational model. The aim of this work is twofold: (1) to propose a probabilistic model for the fluid–structure interaction considering modeling errors and (2) to analyze the stability and reliability of the stochastic system. The Euler–Bernoulli beam model is used to model the pipe and the plug flow model is used to take into account the internal flow in the pipe. The resulting differential equation is discretized by means of the finite element method and a reduced-order model is constructed from some eigenmodes of the beam. A probabilistic approach is used to model uncertainties in the fluid–structure interaction. The proposed strategy takes into account global uncertainties related to the noninertial coupled fluid forces (related to damping and stiffness). The resulting random eigenvalue problem is used to analyze flutter and divergence unstable modes of the system for different values of the dimensionless flow speed. The numerical results show the random response of the system for different levels of uncertainty, and the reliability of the system for different dimensionless speeds and levels of uncertainty.  相似文献   

18.
Electrical, thermal and mechanical properties of Vertically Aligned Multi Walled Carbon NanoTubes (VA-MWCNT) make them an ideal candidate to replace some of conventional materials in micro and nano-electronic components. Integrating this material in micro components requires a good knowledge of their properties. As the electrical and thermal properties, the MWCNT mechanical properties are difficult to assess. Several techniques have been developed to estimate the CNT Young's modulus and the obtained results cover a large range of scale. In this study, we propose an indirect technique for MWCNT carpet Young's modulus measurements by using the nanoindentation technique. Nanoindentation tests are performed on a metallic film deposited on MWCNT. The measured equivalent reduced modulus takes into account the elastic properties of the metallic thin film and those of the MWCNT substrate. Bec et al. model, introduced in 2006, is used to separate elastic properties, and thus determine the MWCNT reduced Young’s modulus which is estimated between 329 and 352 GPa. Knowing the indenter mechanical properties, we estimate the Young’s modulus in the 461 to507 GPa range.  相似文献   

19.
The mechanical behavior of granular materials depends much on the shape of the constituent particles. Therefore appropriate modeling of particle, or grain, shape is quite important. This study employed the method of direct modeling of grain shape (Matsushima & Saomto, 2002), in which, the real shape of a grain is modeled by combining arbitrary number of overlapping circular elements which are connected to each other in a rigid way. Then, accordingly, a discrete-element program is used to simulate the assembly of grains. In order to measure the effects of grain shape on mechanical properties of assembly of grains, three types of grains—high angular grains, medium angular grains and round grains are considered where several biaxial tests are conducted on assemblies with different grain types. The results show that the angularity of grains greatly affects the behavior of granular soil.  相似文献   

20.
An experimental study of local and global bifurcations in a driven two-well magneto-mechanical oscillator is presented. A detailed picture of the local bifurcation structure of the system is obtained using an automated bifurcation data acquisition system. Basins of attractions for the system are obtained using a new experimental technique: an ensemble of initial conditions is generated by switching between stochastic and deterministic excitation. Using this stochastic interrogation method, we observe the evolution of basins of attraction in the nonlinear oscillator as the forcing amplitude is increased, and find evidence for homoclinic bifurcation before the onset of chaos. Since the entire transient is collected for each initial condition, the same data can be used to obtain pictures of the flow of points in phase space. Using Liouville's Theorem, we obtain damping estimates by calculating the contraction of volumes under the action of the Poincaré map, and show that they are in good agreement with the results of more conventional damping estimation methods. Finally, the stochastic interrogation data is used to estimate transition probability matrices for finite partitions of the Poincaré section. Using these matrices, the evolution of probability densities can be studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号