共查询到16条相似文献,搜索用时 46 毫秒
1.
以SnCl4.5H2O、ZnNO3.6H2O、HCl、NaOH、FeCl3.6H2O为原料,采用共沉淀法制备Fe掺杂纳米ZnO/SnO2复合催化剂粉体,以溶液降解甲基橙反应为模型,借助透射电镜(TEM)、X射线衍射(XRD)测试仪等研究了热处理温度对0.2wt%Fe-Zn4Sn1(ZnO/SnO2=4/1(物质的量比))复合催化剂(简为:FZS)粉体催化活性和结构的影响。结果表明:随着热处理温度的升高,光催化活性先升高后降低,热处理温度为650℃时所得的FZS粉体的光催化活性达到最高,对甲基橙的降解率为89.63%(紫外光照50 min)。随着热处理温度升高,FZS粉体的粒径逐渐增大,分散性仍然较好。当热处理温度达到750℃时,随着热处理温度的升高,FZS粉体团聚现象明显,比表面积急剧减小,使得光催化活性降低。在热处理温度高于850℃时,样品中出现Zn2SnO4晶体,也使得光催化活性降低。 相似文献
2.
以Zn片为基底和锌源,采用正丁胺-水热体系原位生长Zn基ZnO纳米线薄膜.薄膜的形貌、结构、比表面积及光谱性质采用X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、比表面仪(BET)、荧光光谱仪(PL)及紫外-可见漫反射光谱仪(UV-Vis-DRS)进行分析,薄膜的光催化活性通过紫外光降解甲基橙来评价.结果表明,所生长的Zn基ZnO纳米线薄膜对甲基橙具有良好的光催化活性和循环使用性.水热生长12 h的ZnO样品因长径比大,致密度高,比表面积大,结构中的氧空位浓度高,光催化活性最高. 相似文献
3.
以Zn( NO3)3·6H2O、Ce( NO3)3·6H2O为原料,明胶为模板分散剂,采用凝胶模板燃烧法制备纯ZnO和Ce/ZnO纳米晶,利用XRD、TEM、BET、UV-Vis漫反射进行表征.以染料罗丹明B为目标降解物考察了样品的光催化活性.结果表明:产物粒子形状基本为球形,结晶良好,属六方晶系结构.相比纯ZnO,Ce/ZnO对光具有更高的吸收利用率,在紫外和可见光下对罗丹明B的降解能力均有明显提高;随Ce掺杂量的增加,样品的粒径减小,比表面积增大,罗丹明B的降解率相应增大,在紫外和可见光下降解率分别可达98.6;、78.3;,其原因在于Ce掺杂有利于在ZnO纳米粒子中心和表面之间产生电势差,实现光生电子-空穴对的有效分离. 相似文献
4.
以Zn(NO3)2·6H2 O、氨水和不同的表面活性剂为原料,采用沉淀法制备了具有不同微观形貌和尺寸的纳米ZnO,研究表面活性剂对纳米ZnO光催化降解甲基橙性能的影响.通过X射线衍射仪(XRD)、扫描电镜(SEM)和紫外可见分光光度计(UV-Vis)等对所制备纳米ZnO的物相、形貌及光吸收性能进行表征,并对其进行光催化性能测试.结果表明,以CTAB为表面活性剂所制备的纳米ZnO,粒径均匀、分散性良好、无明显团聚现象,并且对甲基橙的光催化降解性能最好,在2 h内降解率可达90.6;. 相似文献
5.
采用一种简单的方法制备了铁掺杂氧化锌的粉末,将其作为光催化剂对甲基橙(MO)的光催化降解进行了研究.通过X射线衍射图谱(XRD)、紫外可见吸收光谱(UV-vis)、扫描电子显微镜(SEM)对所合成样品进行了表征.结果表明,采用铁掺杂氧化锌光催化剂,甲基橙的光催化降解显示出比纯氧化锌催化剂更高的光催化降解率,这被归因于铁的掺杂使颗粒的表面性质改变,有效的阻止了团聚,改善了紫外可见光的吸收.铁掺杂氧化锌光催化剂是甲基橙光催化降解过程的一种有潜力的光催化剂. 相似文献
6.
采用多羟基一步法,以一缩二乙二醇(DEG)为反应溶剂,合成了水相高分散且具有高光催化活性的纳米ZnO颗粒.与以水、乙醇为溶剂制备的ZnO相比,该ZnO颗粒在pH≥6.5的蒸馏水中能分散稳定且保持3天,良好的分散稳定性归因于其表面修饰的CH2-OH与-COOH电离产生的静电斥力.纳米ZnO的光催化性能通过模拟太阳光下降解甲基橙(MO)溶液来评价,结果表明:以DEG为溶剂制备的ZnO光催化活性最高,且空穴及羟基自由基是光催化降解MO的活性物种. 相似文献
7.
采用水解共沉淀法制备了稀土元素(La, Pr, Nd)掺杂量为0.5wt;~1.5wt;的TiO2光催化剂样本,并对其进行了XRD、TG-DTA、TEM、BET和UV-Vis表征.结果表明,所制备的TiO2光催化剂是以锐钛矿晶型为主的纳米颗粒,掺杂抑制了TiO2晶型由锐钛矿向金红石的转变,同时减小了晶粒尺寸、增大了比表面积、提高了吸光度,且使TiO2半导体的吸光范围发生了红移.将制得的TiO2光催化剂应用于溶液中草酸的降解反应,用K2MnO4滴定法分析降解效率,发现经掺杂改性后的TiO2样本光催化效率均有提高.其中,以掺杂量为1.0wt;的La掺杂样本具有最高的降解效率,与纯TiO2样本相比对草酸的降解率提高了近45;. 相似文献
8.
以钛酸丁酯为钛源,氟化铵为氟源,采用溶胶凝胶法制备氟改性二氧化钛光催化剂,并用扫描电镜(SEM)、X射线衍射(XRD)、紫外可见光分度计(UV-Vis)、X射线光电子能谱(XPS)、光致发光荧光光谱仪(PL)、氮气吸附-脱附等方法对样品进行表征.以甲基橙(MO)为模拟污水,研究其光催化活性.结果 表明:F改性TiO2为纳米锐钛矿相,比表面积为141 m2/g.F以化学吸附态存在于TiO2的表面,形成(=)Ti-F基团,F的加入使得TiO2的吸收带边发生了红移,在甲基橙浓度为20 mg/L,紫外光照射时间为80 min时,F改性TiO2的脱色率最大达到了97;,具有较高的光催化活性. 相似文献
9.
采用水热法制备不同Mn掺杂浓度的Zn1-x Mnx O(0.00≤x≤0.08)材料,采用XRD、UV-vis、PL和SEM对样品的结构和光学性质进行表征与分析,并以亚甲基蓝溶液为模拟污染物,评价了Zn1-x Mnx O材料的光催化性能,考察了Mn的掺杂浓度对ZnO的结构、光学性质和光催化性能的影响.结果显示,所有的Zn1-x Mnx O样品都具有单一的六方纤锌矿结构,未有新相生成.Mn掺杂增强了ZnO的可见光响应,提高了其光生电子-空穴对的分离效率.此外,与纯ZnO相比,Zn1-x Mnx O材料表现出更高的光催化性能,其中,Zn0.96 Mn0.04 O样品的光催化活性最佳,其经过30 min光照后,降解率达到97.0;. 相似文献
10.
通过超声法成功制备出形貌均一的ZnO/NiO异质结光催化材料,并采用X射线衍射仪(XRD)、场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)以及光致发光光谱(PL)等分析测试手段对样品的形貌和结构进行了表征.结果表明,ZnO/NiO异质结是由直径约400~600 nm的ZnO纳米球镶嵌着NiO纳米颗粒组成.对比纯NiO纳米颗粒、纯ZnO纳米球和ZnO/NiO异质结对罗丹明B(RhB)的紫外光降解效率,ZnO/NiO异质结表现了最好的光催化活性,这主要是由于ZnO/NiO异质结可以有效的分离光生电子和空穴对,使得它们的复合机率降低,提高其光催化效率. 相似文献
11.
采用改进的溶胶-凝胶法,无需研磨,制备出不同掺杂浓度的纳米Zn1-xFexO(0.00≤x≤O.03)样品.利用TG-DTA对前驱物样品的成分进行了分析,利用XRD,SEM和UV-Vis等方法对煅烧后样品的结构、形貌及光学性质进行了表征.结果显示:80℃烘干后,未掺杂样品前驱物为Zn3(C6H5O7)2,700℃煅烧后,Zn1-xFexO样品均属六方纤锌矿结构,Fe的掺杂没有引入新的杂相,晶粒均呈现为纳米球形颗粒.其具有很宽的光吸收频段和优异的紫外吸收特性,且随Fe浓度的增大光吸收边发生红移.当x=0.007时纳米Zn1-xFexO的光催化性能最好,对甲基橙溶液的降解效率高达99.71;. 相似文献
12.
本文采用水热合成法,以3 mol/L KOH为矿化剂,填充度为35;,分别在ZnO中添加SnCl4·5H2O、CoCl2·6H2O、NiCl2 ·6H2O作为前驱物,温度430℃,反应24h,合成几种金属离子掺杂的ZnO晶体.采用扫描电镜(SEM)和X射线衍射(XRD)对其形貌进行了表征.并与用同种方法合成的纯ZnO的光催化效率进行了对比.结果表明:金属离子掺杂的ZnO晶体和用同种方法合成的纯ZnO晶体对亚甲基蓝均具有光催化活性,其中Sn掺杂的ZnO晶体的光催化性能较好,并且经过10次循环实验后仍保持较高的催化效率. 相似文献
13.
利用溶胶-凝胶法与固相混合法制备了掺La超微纳米晶TiO2负载ZnO异质结纳米复合材料La-TiO2/ZnO.采用比表面积(BET和BJH)、X-射线衍射(XRD)、紫外-可见光吸收(UV-vis)、高分辨透射电镜(HRTEM)和X-射线光电子能谱(XPS)表征催化剂的物理化学性能.La-TiO2/ZnO异质结光催化活性通过紫外光降解亚甲基蓝(MB)来评价,当nTiO2:nLa∶ nZnO=1∶0.015∶0.5时,光催化活性最佳.其主要原因是掺La超微纳米晶TiO2在ZnO表面形成多异质结,可有效抑制光生电子空穴对的复合.本文探讨了光催化活性较高的催化机理. 相似文献
14.
15.
16.
采用原位水热法合成MgFe2O4/ZnO纳米复合材料,通过窄带隙的磁性铁酸镁半导体与宽带隙的氧化锌半导体进行匹配并形成具有异质结的复合光催化剂。借助X射线衍射仪(XRD)分析样品的相结构、扫描电子显微镜观察样品微观形貌、振动样品磁场计(VSM)测试样品磁性能、紫外-可见分光光度计(UV-Vis)表征MgFe2O4/ZnO磁性纳米复合材料光催化性能。结果表明,与MgFe2O4复合之后的MgFe2O4/ZnO磁性纳米复合材料对光的吸收范围拓宽到可见光范围,有效提高了ZnO的光催化性能,在可见光照射60 min后,对甲基橙溶液的降解率可达到95.2%,该催化剂5次循环后的活性仍然大于87.3%。 相似文献