首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
THF-gramicidin hybrids 2-4 with the L-THF amino acid 1 in positions 11 and 12 and compounds 5-8 with the D-THF amino acid ent-1 in positions 10 and 11 were synthesized and their ion channel properties were studied by single-channel-current analysis. The replacement of positions 11 and 12 by the L-THF amino acid 1 gave a strongly reduced channel performance. In contrast, replacement of positions 10 and 11 by the D-THF amino acid ent-1 gave rise to new and interesting channel properties. For the permeability ratios, the ion selectivity shifts from Eisenman I towards Eisenman III selectivity and the channels display ms-dynamics. Most remarkable is the asymmetric compound 8, which inserts selectively into a DPhPC membrane and displays voltage-directed gating dynamics.  相似文献   

2.
An earlier study showed that a calix[4]arene could function as a central relay unit to form an ion conductance pathway through a phospholipid bilayer membrane. The present study expands the range of compounds from calix[4]arene to calix[6]arene and incorporates them either as central units or as headgroups, substituting one or more diaza-18-crown-6 residues in functioning hydraphiles. Ion release was assayed by detecting either Na(+) or Cl(-) release from phospholipid vesicles. The ion transport activity for calix[4]arenes in either position is modest, but is almost non-existent when calix[6] residues were incorporated either as head groups or central relay units. The poor activity of the calix[6]arenes may result from an inability to penetrate to the midplane of the bilayer or pass entirely through it to form a conductance pathway. The transmembrane "flip-flop" may result from high polarity or steric bulk, or both. A hydraphile incorporating a single -NHCOC(6)H(4)OCH(2)CONH- as a central relay proved to be an excellent Na(+) conductor, but less selective for Cl(-). The fact that this new hydraphile molecule shows selectivity for Na (+) over Cl(-) transport and possesses two secondary amide residues in the central relay suggests a means to control ion selectivity in synthetic ion transporters.  相似文献   

3.
The ability to design ion-selective, synthetic nanotubes which mimic biological ion channels may have significant implications for the future treatment of bacteria, diseases, and as ultrasensitive biosensors. We present the design of a synthetic nanotube made from carbon atoms that selectively allows monovalent cations to move across and rejects all anions. The cation-selective nanotube mimics some of the salient properties of biological ion channels. Before practical nanodevices are successfully fabricated it is vital that proof-of-concept computational studies are performed. With this in mind we use molecular and stochastic dynamics simulations to characterize the dynamics of ion permeation across a single-walled (10, 10), 36 A? long, carbon nanotube terminated with carboxylic acid with an effective radius of 5.08 A?. Although cations encounter a high energy barrier of 7 kT, its height is drastically reduced by a chloride ion in the nanotube. The presence of a chloride ion near the pore entrance thus enables a cation to enter the pore and, once in the pore, it is chaperoned by the resident counterion across the narrow pore. The moment the chaperoned cation transits the pore, the counterion moves back to the entrance to ferry another ion. The synthetic nanotube has a high sodium conductance of 124 pS and shows linear current-voltage and current-concentration profiles. The cation-anion selectivity ratio ranges from 8 to 25, depending on the ionic concentrations in the reservoirs.  相似文献   

4.
Experimental studies on gaseous inorganic phosphate ions are practically nonexistent, yet they can prove helpful for a better understanding of the mechanisms of phosphate ester enzymatic processes. The present contribution extends our previous investigations on the gas-phase ion chemistry of diphosphate species to the [M(1)M(2)HP(2)O(7)](-) ions where M(1) and M(2) are the same or different and correspond to the Li, Na, K, Cs, and Rb cations. The diphosphate ions are formed by electrospray ionization of 10(-4) M solutions of Na(5)P(3)O(10) in CH(3)CN/H(2)O (1/1) and MOH bases or M salts as a source of M(+) cations. The joint application of mass spectrometric techniques and quantum-mechanical calculations makes it possible to characterize the gaseous [M(1)M(2)HP(2)O(7)](-) ions as a mixed ionic population formed by two isomeric species: linear diphosphate anion coordinated to two M(+) cations (group I) and [PO(3)M(1)M(2)HPO(4)](-) clusters (group II). The relative gas-phase stabilities and activation barriers for the isomerization I-->II, which depend on the nature of the M(+) cations, highlight the electronic susceptibility of P-O-P bond breaking in the active site of enzymes. The previously unexplored gas-phase reactivity of [M(1)M(2)HP(2)O(7)](-) ions towards alcohols of different acidity was investigated by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The reaction proceeds by addition of the alcohol molecule followed by elimination of a water molecule.  相似文献   

5.
The dissociative recombination of Na(+)(D(2)O) ion has been studied at the heavy-ion storage ring CRYRING (Manne Siegbahn Laboratory, Stockholm University). The cross section has been measured as a function of center-of-mass energy ranging from 1 meV to 0.1 eV and found to have an E(-1.37) dependence. The rate coefficient has been deduced to be (2.3+/-0.32)x10(-7)(T(e)/300)(-0.95+/-0.01) cm(3) s(-1) for T(e)=50-1000 K. The branching ratios have been measured at 0 eV. Of the four energetically accessible dissociation channels, three channels are found to occur although the channel that breaks the weak Na(+)-D(2)O bond is by far dominant.  相似文献   

6.
The synthesis and characterization of the ion channel activity of three new bola-amphiphiles is described. These compounds are conceptually derived from a previously reported bis-cyclophane bola-amphiphile through opening of the cyclophanes to acyclic structures and were found to readily form ion channels in planar bilayer membranes as assessed by bilayer clamp single-channel analysis. All three compounds behaved very similarly: the dominant channels formed by all three are Ohmic with specific conductance of 10 +/- 1 pS (NaCl electrolyte) and 39 +/- 1 pS (CsCl electrolyte). Single-ion permeability ratios, determined from dissymmetric electrolyte experiments, showed the selectivity P(Cs(+)) > P(Na(+)) > P(Cl(-)). Less frequently, lower conductance channels were also observed to act independently of the dominant channels. The lifetimes of the dominant channels range from 70 to 280 ms for the three compounds with some very long-lived openings (20-40 s) observed for two of the three. The lower conductance states have shorter lifetimes. This study demonstrates that bis-macrocyclic compounds are not essential for channel formation by bola-amphiphiles, and opens a new class of channel-forming compounds for structure-activity optimization.  相似文献   

7.
Four different recently synthesized macrocyclic diamides were studied to characterize their abilities as uranyl ion carriers in PVC membrane electrodes. The electrodes based on macrocycle 1,18-diaza-3,4;15,16-dibenzo-5,8,11,14,21,24-hexaoxacyclohexaeicosane-2,17-dione resulted in a Nernstian response for UO(2)(2+) ion over wide concentration ranges. The linear concentration range for the polymeric membrane electrode (PME) is 3.0x10(-6)-8.2x10(-3) M with a detection limit of 2.2x10(-6) and that for the coated graphite electrode (CGE) is 5.0x10(-7)-1.5x10(-3) M with a detection limit of 3.5x10(-7) M. The electrodes manifest advantages of low resistance, very fast response and, most importantly, good selectivities relative to a wide variety of other cations.  相似文献   

8.
We report herein the design, total synthesis, and functional analysis of a novel artificial ion channel molecule, designated as dansylated polytheonamide mimic (3). The channel 3 was designed based on an exceptionally potent cytotoxin, polytheonamide B (1). Our strategy for the development of synthetic ion channels, which could be easily derivatized for various functions, involved two key features. First, the structure of 1 was simplified by replacing many of nonproteinogenic amino acid residues which required multistep synthesis by commercially available amino acids while retaining those residues necessary for folding. It significantly reduced the number of synthetic steps and facilitated a practical chemical construction of 3. Second, the introduction of propargyl glycine at residue 44 enabled facile installation of dansyl group as a reporter of the membrane localization of 3. Application of a newly designed protective group strategy provided efficient construction of the 37 amino acid sequence of residues 12-48 through one automatic solid-phase peptide synthesis. After peptide cleavage from the resin, 3 was synthesized via dansyl group introduction and one fragment-coupling reaction with residues 1-11, followed by the global deprotection. The simplified mimic 3 exhibited potent cytotoxicity toward p388 mouse leukemia cells (IC(50) = 12 nM), effectively induced ion transport across the lipid bilayers of liposomes, and displayed H(+) and Na(+) ion channel activities. Because of its simplified yet functional scaffold structure with a potential for diversification, our rationally designed ion channel molecule should be useful as a novel platform for developing various cytotoxic channel molecules with additional desired functions.  相似文献   

9.
The binding dynamics of R-(+)-2-naphthyl-1-ethylammonium cation (NpH(+)) with cucurbit[7]uril (CB[7]) was investigated. Competitive binding with Na(+) or H(3)O(+) cations enabled the reaction to be slowed down sufficiently for the kinetics to be studied by fluorescence stopped-flow experiments. The binding of two Na(+) cations to CB[7], i.e., CB[7]·Na(+) (K(01) = 130 ± 10 M(-1)) and Na(+)·CB[7]·Na(+) (K(02) = 21 ± 2 M(-1)), was derived from the analysis of binding isotherms and the kinetic studies. NpH(+) binds only to free CB[7] ((1.06 ± 0.05) × 10(7) M(-1)), and the association rate constant of (6.3 ± 0.3) × 10(8) M(-1) s(-1) is 1 order of magnitude lower than that for a diffusion-controlled process and much higher than the association rate constant previously determined for other CB[n] systems. The high equilibrium constant for the NpH(+)@CB[7] complex is a consequence of the slow dissociation rate constant of 55 s(-1). The kinetics results showed that formation of a complex between a positively charged guest with CB[n] can occur at a rate close to the diffusion-controlled limit with no detection of a stable exclusion complex.  相似文献   

10.
Hydraphiles are synthetic ion channels that use crown ethers as entry portals and that span phospholipid bilayer membranes. Proton and sodium cation transport by these compounds has been demonstrated in liposomes and planar bilayers. In the present work, whole cell patch clamp experiments show that hydraphiles integrate into the membranes of human embryonic kidney (HEK 293) cells and significantly increase membrane conductance. The altered membrane permeability is reversible, and the cells under study remain vital during the experiment. Control compounds that are too short (C(8)-benzyl channel) to span the bilayer or are inactive owing to a deficiency in the central relay do not induce similar conductance increases. Control experiments confirm that the inactive channel analogues do not show nonspecific effects such as activation of native channels. These studies show that the combination of structural features that have been designed into the hydraphiles afford true, albeit simple, channel function in live cells.  相似文献   

11.
Grobler SR  Rechnitz GA 《Talanta》1980,27(3):283-285
A potentiometric sensor has been developed by coupling dental plaque with a flat-surface glass electrode. Selectivity of this electrode for hexoses and pentoses has been tested. The electrode responds linearly to beta-d(+)glucose, d(+)mannose, d(+)galactose and beta-d(-)fructose over a narrow concentration range between 10(-4) and 10(-3)M, but has negligible response to the other hexoses and pentoses. This "plaque" electrode, using live bacterial cells, may serve as a model for the development of other selective electrodes for carbohydrates.  相似文献   

12.
The behaviour of a new type of electrode, made from ceramic Ag(2)S, has been investigated. The electrode response is Nernstian for Ag(+) over the range 10(-6)-2M and for Hg(2+) in the concentration range 10(-6)-10(-2)M, both at constant ionic strength (0.1M). The electrode is Ag(+)-selective, with maximum interference from Hg(2+). It can be used for acid-base potentiometric titration and for potentiometric Ag(+) and Hg(2+) precipitation titrations.  相似文献   

13.
The potency of pharmaceutical compounds acting on ion channels can be determined through measurements of ion channel conductance as a function of compound concentration. We have developed an artificial lipid bilayer chip for simple, fast, and high-yield measurement of ion channel conductance with simultaneous solution perfusion. Here we show the application of this chip to the measurement of the mammalian cold and menthol receptor TRPM8. Ensemble measurements of TRPM8 as a function of concentration of menthol and 2-aminoethoxydiphenyl borate (2-APB) enabled efficient determination of menthol's EC(50) (111.8 μM ± 2.4 μM) and 2-APB's IC(50) (4.9 μM ± 0.2 μM) in agreement with published values. This validation, coupled with the compatibility of this platform with automation and parallelization, indicates significant potential for large-scale pharmaceutical ion channel screening.  相似文献   

14.
Solution-grown single-crystal Ge nanowires were used as conductive channels in field effect transistor devices to study the influence of surface states on their electron transport properties. Nanowires contacted with Pt electrodes using focused ion beam metal deposition exhibited linear current-voltage (IV) curves at room temperature with apparent resistivities ranging from 10(1) to 10(-1) Omega cm. In all cases, the nanowire conductance decreased with positive external electric fields applied perpendicular to the nanowire surface by a gate electrode, characteristic of p-type carrier accumulation at the nanowire surface. The field-induced change in conductance exhibited a time-dependent relaxation, with response time and magnitude of current decrease that depended on the nanowire surface chemistry. Nanowires treated with an organic passivation layer using a thermally initiated hydrogermylation reaction exhibited 2 orders of magnitude slower current relaxation and a smaller decrease in current relative to "bare" nanowires with oxidized surfaces.  相似文献   

15.
Hassan SS  Mahmoud WH  Othman AH 《Talanta》1997,44(6):1087-1094
A novel potentiometric membrane sensor for potassium ion based on the use of rifamycin as a neutral ionophore is described. The sensing membrane is formulated with 2 wt.% rifamycin-SV, 69 wt.% dibutylsebacate plasticizer and 29 wt.% PVC. Linear and stable potential response with near-Nernstian slope of 56.7 +/- 0.2 mV decade(-1) are obtained over the concentration range 1 x 10(-1)-3 x 10(-5) M K(+). The detection limit is 0.3 microg ml(-1) K(+), the response time is 10-30 s and the working pH range is 4-11. Responses of the sensor toward alkali and alkaline earth metal ions are in the order K(+) > Rb(+) > Cs(+) > Na(+) > NH(4)(+) > Ba(2+) > Mg(2+) > Ca(2+) > Sr(2+) > Li(+). The selectivity coefficient data reveal negligible interference from transition metal ions. Direct potentiometric determination of K(+) in the presence of 10-50-fold excess of alkali and alkaline earth metals gives results with an average recovery of 99.1%, and a mean standard deviation of 1.2%. The data agree fairly well with those obtained by flame photometry.  相似文献   

16.
A new class of supramolecular transmembrane ion channels was prepared by linking two amphiphilic cholic acid methyl ethers through biscarbamate bonds to afford bis(7,12-dimethyl-24-carboxy-3-cholanyl)-N,N'-xylylene dicarbamate 2 and bis[7,12-dimethyl-24-(N,N,N-trimethylethanaminium-2-carboxylate)-3-cholanyl]-N,N'-xylylene dicarbamate dichloride 3. When incorporated into a planar bilayer membrane, both compounds showed stable (lasting 10 ms to 10 s) single ion channel currents. Only limited numbers of relatively small conductances were characterized for these channels (5-20 pS for 2 and 5-10 pS for 3, 10 and 17 pS for 2, and 9 pS for 3 in particular). Both channels were cation selective, and permeability ratios of potassium cation to chloride anion were 17 and 7.9 for 2 and 3, respectively, reflecting the difference in ionic species of the headgroup. Both channels 2 and 3 showed significant potassium selectivity over sodium by a factor of 3.1 and 3.2, respectively. No Li(+) currents were observed for 2, showing sharp discrimination between Na(+) or K(+).  相似文献   

17.
The potentiometric response of PLD-made LiFePO(4) thin films versus Li(+) ions in aqueous solutions has been investigated, and a sensitivity of 54 mV dec(-1) has been observed in a Li(+) concentration range of 1-10(-4) M. Physical and electrochemical measurements of electrodes aged in aqueous medium show a slight surface oxidation with formation of heterosite-FePO(4) that we show to be responsible for the stable potential response measured. Cyclic voltamperometry measurements operated in different Li(+) concentration clearly highlight the key relation between the material lithium ion insertion/de-insertion capability and its potentiometric sensing response implying a faradaic-governed sensing mechanism. Based on such a finding, selection criteria (enlisting among others the potential of the redox couple, the nature of the insertion process) are herein underlined in the search for new sensitive materials.  相似文献   

18.
Synthetic ion channels have been known for nearly three decades, but it is only in the past decade that analysis of the currents these ionic conductors carry has become a standard technique. A broad range of structural types have been explored and these reports have produced a very diverse collection of ion channel conductance behaviours. In this critical review we describe a notational method to extract salient information from reported ion channel experiments. We use an activity grid to represent quantitative information on conductance and opening duration with a five-level colour code to represent qualitative information on the nature of the conductance-time profile. Analysis of the cumulative dataset suggests that the reported conductance data can reflect the structural features of the compounds prepared, but does also reflect the energetic landscape of the bilayer membrane in which synthetic ion channels function (143 references).  相似文献   

19.
Systematic experimental and theoretical studies on anionic phosphate species in the gas phase are almost nonexistent, even though they could provide a benchmark for enhanced comprehension of their liquid-phase chemical behavior. Gaseous MH(2)P(2)O(7) (-) ions (M=Li, Na, K, Rb, Cs), obtained from electrospray ionization of solutions containing H(4)P(2)O(7) and MOH or M salts as a source of M(+) ions were structurally assayed by collisionally activated dissociation (CAD) mass spectrometry and theoretical calculations at the B3LYP/6-31+G* level of theory. The joint application of mass spectrometric techniques and theoretical methods allowed the MH(2)P(2)O(7) (-) ions to be identified as having a structure in which the linear diphosphate anion is coordinated to the M(+) ion (I) and provides information on gas-phase isomerization processes in the [PO(3)...MH(2)PO(4)](-) clusters II and the [P(2)O(6)...M...H(2)O](-) clusters IV. Studies of gas-phase reactivity by Fourier transform ion cyclotron resonance (FTICR) and triple quadrupole (TQ) mass spectrometry revealed that the MH(2)P(2)O(7) (-) ions react with selected nucleophiles by clustering, proton transfer and addition-elimination mechanisms. The influence of the coordination of alkali metal ions on the chemical behavior of pyrophosphate is discussed.  相似文献   

20.
The formation of highly stable inclusion complexes in aqueous solution between the organometallic cobaltocenium cation (Cob(+)) and the hosts cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) was used to develop a simple method, based on UV-vis titrations, to assay the purity of samples of these two hosts. The equilibrium association constant (K) of the Cob(+)@CB7 complex had been previously reported by our group as 5.7 × 10(9) M(-1) at 25 °C in 50 mM sodium acetate medium. In this work, we determine a K value of 1.9 × 10(8) M(-1) at 25 °C in the same medium for the Cob(+)@CB8 complex. The high stability of these complexes and their decreased molar absorptivity coefficients (at 261 nm), compared to that for free Cob(+), lead to straightforward titration plots when graphing absorbance versus concentration of added CB7 (or CB8) host, at constant Cob(+) concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号