首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The hepatitis C virus (HCV) RNA-dependent RNA polymerase, NS5B protein, is the key viral enzyme responsible for replication of the HCV viral RNA genome. Although several full-length and truncated forms of the HCV NS5B proteins have been expressed previously in insect cells, contamination of host terminal transferase (TNTase) has hampered analysis of the RNA synthesis initiation mechanism using natural HCV RNA templates. We have expressed the HCV NS5B protein in insect cells using a recombinant baculovirus and purified it to near homogeneity without contaminated TNTase. The highly purified recombinant HCV NS5B was capable of copying 9.6-kb full-length HCV RNA template, and mini-HCV RNA carrying both 5'- and 3'-untranslated regions (UTRs) of the HCV genome. In the absence of a primer, and other cellular and viral factors, the NS5B could elongate over HCV RNA templates, but the synthesized products were primarily in the double stranded form, indicating that no cyclic replication occurred with NS5B alone. RNA synthesis using RNA templates representing the 3'-end region of HCV minus-strand RNA and the X-RNA at the 3'-end of HCV RNA genome was also initiated de novo. No formation of dimer-size self-primed RNA products resulting from extension of the 3'-end hydroxyl group was observed. Despite the internal de novo initiation from the X-RNA, the NS5B could not initiate RNA synthesis from the internal region of oligouridylic acid (U)(20), suggesting that HCV RNA polymerase initiates RNA synthesis from the selected region in the 3'-UTR of HCV genome.  相似文献   

2.
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses’ story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.  相似文献   

3.
4.
5.
The NS3 serine protease enzyme of the hepatitis C virus (HCV) is essential for viral replication. Short peptides mimicking the N-terminal substrate cleavage products of the NS3 protease are known to act as weak inhibitors of the enzyme and have been used as templates for the design of peptidomimetic inhibitors. Automated solid-phase synthesis of a small library of compounds based on such a peptidomimetic scaffold has led to the identification of potent and highly selective inhibitors of the NS3 protease enzyme.  相似文献   

6.
吕巍  薛英 《物理化学学报》2011,27(6):1407-1416
在丙型肝炎病毒(HCV)的基因复制和蛋白质成熟的过程中, 非结构蛋白5B(NS5B)作为RNA依赖的RNA聚合酶起到了重要的作用. 抑制NS5B聚合酶可以阻止丙型肝炎病毒的RNA复制, 因此成为一种治疗丙型肝炎的有效方法. 通过计算机方法进行虚拟筛选和预测NS5B聚合酶抑制剂已经变得越来越重要. 本文主要采用机器学习方法(支持向量机(SVM)、k-最近相邻法(k-NN)和C4.5决策树(C4.5 DT))对已知的丙型肝炎病毒NS5B蛋白酶抑制剂与非抑制剂建立分类预测模型. 1248个结构多样性化合物(552个NS5B抑制剂与696个非NS5B抑制剂)被用于测试分类预测系统, 并用递归变量消除法选择与NS5B抑制剂相关的性质描述符以提高预测精度. 独立验证集的总预测精度为84.1%-85.0%, NS5B抑制剂的预测精度为81.4%-91.7%, 非NS5B抑制剂的预测精度为78.2%-87.2%. 其中支持向量机给出最好的NS5B抑制剂预测精度(91.7%); C4.5决策树给出最好的非NS5B抑制剂预测精度(87.2%); k-最近相邻法给出最好的总预测精度(85.0%). 研究表明机器学习方法可以有效预测未知数据集中潜在的NS5B抑制剂, 并有助于发现与其相关的分子描述符.  相似文献   

7.
BackgroundHepatitis C Virus (HCV) infection is a major public health concern across the globe. At present, direct-acting antivirals are the treatment of choice. However, the long-term effect of this therapy has yet to be ascertained. Previously, fluoroquinolones have been reported to inhibit HCV replication by targeting NS3 protein. Therefore, it is logical to hypothesize that the natural analogs of fluoroquinolones will exhibit NS3 inhibitory activity with substantially lesser side effects.MethodIn this study, we tested the application of a recently devised integrated in-silico Cheminformatics-Molecular Docking approach to identify physicochemically similar natural analogs of fluoroquinolones from the available databases (Ambinter, Analyticon, Indofines, Specs, and TimTec). Molecular docking and ROC curve analyses were performed, using PatchDock and Graphpad software, respectively, to compare and analyze drug-protein interactions between active natural analogs, Fluoroquinolones, and HCV NS3 protein.ResultIn our analysis, we were able to shortlist 18 active natural analogs, out of 10,399, that shared physicochemical properties with the template drugs (fluoroquinolones). These analogs showed comparable binding efficacy with fluoroquinolones in targeting 32 amino acids in the HCV NS3 active site that are crucial for NS3 activity. Our approach had around 80 % sensitivity and 70 % specificity in identifying physicochemically similar analogs of fluoroquinolones.ConclusionOur current data suggest that our approach can be efficiently applied to identify putative HCV drug inhibitors that can be taken for in vitro testing. This approach can be applied to discover physicochemically similar analogs of virtually any drug, thus providing a speedy and inexpensive approach to complement drug discovery and design, which can tremendously economize on time and money spent on the screening of putative drugs.  相似文献   

8.
In the life cycle of hepatitis C virus (HCV), NS3/NS4A protease has been proved to play a vital role in the replication of the HCV virus. Narlaprevir and its derivatives, the inhibitors of NS3/NS4A, would be potentially developed as important anti-HCV drugs in the future. In this study, quantitative structure-activity relationship (QSAR) analyses for 190 narlaprevir derivatives were conducted using comparative molecular field analysis (CoMFA), comparative molecular indices analysis (CoMSIA) and hologram quantitative structure-activity relationship (HQSAR) techniques. Both of the best CoMFA and HQSAR models showed statistical significance for the training set and good predictive accuracy for the test set, which strongly manifested the robustness of the CoMFA and HQSAR models. The CoMFA contour maps and the HQSAR contribution maps were both presented. Furthermore, based on the essential factors for ligand binding derived from the QSAR models, sixteen new derivatives were designed and some of them showed higher inhibitory activities confirmed by our models and molecular docking studies. General speaking, this study provides useful suggestions for the design of potential anti-HCV drugs.  相似文献   

9.
10.

Abstract  

Serine protease activity of the NS3 protein of Dengue virus is an important target of antiviral agents that interfere with the viral polyprotein precursor processing catalyzed by the NS3 protease (NS3pro), which is important for the viral replication and maturation. Recent studies showed that substrate-based peptidomimetics carrying an electrophilic warhead inhibit the NS2B-NS3pro cofactor-protease complex with inhibition constants in the low micromolar concentration range when basic amino acid residues occupy P1 and P2 positions of the inhibitor, and an aldehyde warhead is attached to the P1. We have used computer-assisted combinatorial techniques to design, focus using the NS2B-NS3pro receptor 3D structure, and in silico screen a virtual library of more than 9,200 peptidomimetic analogs targeted around the template inhibitor Bz-Nle-Lys-Arg-Arg-H (Bz—benzoyl) that are composed mainly of unusual amino acid residues in all positions P1–P4. The most promising virtual hits were analyzed in terms of computed enzyme-inhibitor interactions and Adsorption, Distribution, Metabolism and Excretion (ADME) related physico-chemical properties. Our study can direct the interest of medicinal chemists working on a next generation of antiviral chemotherapeutics against the Dengue Fever towards the explored subset of the chemical space that is predicted to contain peptide aldehydes with NS3pro inhibition potencies in nanomolar range which display ADME-related properties comparable to the training set inhibitors.  相似文献   

11.
Sowole MA  Kraatz HB 《The Analyst》2012,137(5):1120-1124
Here we lay the ground work for the detection of hepatitis C viral NS3-4A protease exploiting peptide-protein interaction. The NS3-4A protease is inhibited by N-terminal cleavage products. Our approach is based on the formation of a self-assembled monolayer (SAM) of a ferrocene amino acid derivative on an electrode surface. A short NS3-4A specific inhibitory peptide (Asp-Glu-Ile-Val-Pro-Nva) was then covalently attached to the electrode surface. The interaction of the peptide, through the C-terminal, with the protein was quantified using electrochemical techniques. The systems exhibit a linear relationship between the measured signal and NS3-4A concentration in the range of 10-100 pM with a detection limit of 5 pM.  相似文献   

12.
13.
As the major cause of the common cold in children and adults, human rhinoviruses (HRVs) are a group of small single-stranded positive-sense RNA viruses. HRVs translate their genetic information into a polyprotein precursor that is mainly processed by a virally encoded 3C protease (3Cpro) to generate functional viral proteins and enzymes. It has been shown that the enzymatic activity of HRV 3Cpro is essential to viral replication. The 3Cpro is distinguished from most other proteases by the fact that it has a cysteine nucleophile but with a chymotrypsin-like serine protease folding. This unique protein structure together with its essential role in viral replication made the 3Cpro an excellent target for antiviral intervention. In recent years, considerable efforts have been made in the development of antiviral compounds targeting this enzyme. To further facilitate the design of potent 3C protease inhibitors for therapeutic use, this review summarizes the biochemical and structural characterization conducted on HRV 3C protease along with the recent progress on the development of 3C protease inhibitors.  相似文献   

14.
White spot syndrome virus (WSSV) is the causative agent of white spot syndrome, one of the most devastating diseases in shrimp aquaculture. The genome of WSSV includes a gene that encodes a putative family B DNA polymerase (ORF514), which is 16% identical in amino acid sequence to the Herpes virus 1 DNA polymerase. The aim of this work was to demonstrate the activity of the WSSV ORF514-encoded protein as a DNA polymerase and hence a putative antiviral target. A 3.5 kbp fragment encoding the conserved polymerase and exonuclease domains of ORF514 was overexpressed in bacteria. The recombinant protein showed polymerase activity but with very low level of processivity. Molecular modeling of the catalytic protein core encoded in ORF514 revealed a canonical polymerase fold. Amino acid sequence alignments of ORF514 indicate the presence of a putative PIP box, suggesting that the encoded putative DNA polymerase may use a host processivity factor for optimal activity. We postulate that WSSV ORF514 encodes a bona fide DNA polymerase that requires accessory proteins for activity and maybe target for drugs or compounds that inhibit viral DNA replication.  相似文献   

15.
Roh C  Jo SK 《Talanta》2011,85(5):2639-2642
In this study, we elucidated a small molecule inhibitor on viral protein NS5B identified through a high-throughput screening strategy using optical nanoparticle-based RNA oligonucleotide. We have previously shown that quantum dots (QDs)-RNA oligonucleotide can specifically recognize the HCV viral proteins. We have also demonstrated that conjugated QDs-RNA oligonucleotide can specifically and sensitively interact with designed biochips [1] and [2]. Among the flavonoids examined, (−)-epigallocatechin gallate (EGCG) demonstrated a remarkable inhibition activity on HCV viral protein, NS5B. (−)-Epigallocatechin gallate, at 0.005 μg mL−1 or more, concentration-dependently attenuated the binding affinity on a designed biochip as evidenced by QDs-RNA oligonucleotide. At a concentration of 0.1 μg mL−1, (−)-epigallocatechin gallate showed a 50% inhibition activity on QDs-RNA oligonucleotide biochip assay. We screened a small molecule inhibitor on the viral protein, NS5B, identified through a high-throughput screening strategy using on-chip optical nanoparticle-based RNA oligonucleotide on chip. In this designed strategy, the convenient and efficient screening and development of an on-chip viral protein inhibitor using a QDs-RNA oligonucleotide assay is achievable with high sensitivity and simplicity. In addition, this platform is expected to be applicable toward the inhibitor screening of other types of diseases.  相似文献   

16.
Mutual information (MI) is an approach commonly used to estimate the evolutionary correlation of 2 amino acid sites. Although several MI methods exist, prior to our contribution no systematic method had been developed to assess their performance, or to establish numerical thresholds to detect co-evolving amino acid sites. The current study performed a Markov chain Monte Carlo (MCMC) algorithm on influenza viral sequences to capture their evolutionary characteristics. A consensus maximum clade credibility (MCC) tree was estimated from the samples, together with their amino acid substitution statistics, from which we generated synthetic sequences of known dependent and independent paired amino acid sites. A pair-to-pair and influenza-specific amino acid substitution matrix (P2PFLU) incorporated into Bayesian Evolutionary Analysis Sampling Trees (BEAST) enumerated these synthetic sequences. The sequences inherited evolutionary features and co-varying characteristics from the real viral sequences, rendering these synthetic data ideal for exploring their co-evolving features. For the MI measure, we proposed a novel metric called the empirical MI (MIEm), which outperformed other MI measures in analysis of receiver operating characteristics (ROC). We implemented our approach on 1086 all-time PB2 sequences of influenza A H5N1 viruses, in which we found 97 sites exhibiting co-evolutionary substitution of one or more amino acid sites. In particular, PB2 451, along with eight other PB2 sites of various MIEm scores, was found to co-evolve with PB2 627, a known species-associated amino acid residue which plays a critical role in influenza virus replication.  相似文献   

17.
Viruses have been a long-term source of infectious diseases that can lead to large-scale infections and massive deaths. Especially with the recent highly contagious coronavirus (COVID-19), antiviral drugs were developed nonstop to deal with the emergence of new viruses and subject to drug resistance. Nitrogen-containing heterocycles have compatible structures and properties with exceptional biological activity for the drug design of antiviral agents. They provided a broad spectrum of interference against viral infection at various stages, from blocking early viral entry to disrupting the viral genome replication process by targeting different enzymes and proteins of viruses. This review focused on the synthesis and application of antiviral agents derived from various nitrogen-containing heterocycles, such as indole, pyrrole, pyrimidine, pyrazole, and quinoline, within the last ten years. The synthesized scaffolds target HIV, HCV/HBV, VZV/HSV, SARS-CoV, COVID-19, and influenza viruses.  相似文献   

18.
Zika virus (ZIKV) represents a re-emerging threat to global health due to its association with congenital birth defects. ZIKV NS2B-NS3 protease is crucial for virus replication by cleaving viral polyprotein at various junctions to release viral proteins and cause cytotoxic effects in ZIKV-infected cells. This study characterized the inhibitory effects of doxycycline against ZIKV NS2B-NS3 protease and viral replication in human skin cells. The in silico data showed that doxycycline binds to the active site of ZIKV protease at a low docking energy (−7.8 Kcal/mol) via four hydrogen bonds with the protease residues TYR1130, SER1135, GLY1151, and ASP83. Doxycycline efficiently inhibited viral NS2B-NS3 protease at average human temperature (37 °C) and human temperature with a high fever during virus infection (40 °C). Interestingly, doxycycline showed a higher inhibitory effect at 40 °C (IC50 = 5.3 µM) compared to 37 °C (9.9 µM). The virus replication was considerably reduced by increasing the concentration of doxycycline. An approximately 50% reduction in virus replication was observed at 20 µM of doxycycline. Treatment with 20 µM of doxycycline reduced the cytopathic effects (CPE), and the 40 µM of doxycycline almost eliminated the CPE of human skin cells. This study showed that doxycycline binds to the ZIKV protease and inhibits its catalytic activity at a low micro-molecular concentration range. Treatment of human skin fibroblast with doxycycline eliminated ZIKV infection and protected the cells against the cytopathic effects of the infection.  相似文献   

19.
A safe and effective vaccine against human immunodeficiency virus type 1 (HIV‐1) is urgently needed to combat the worldwide AIDS pandemic, but still remains elusive. The fact that uncontrolled replication of an attenuated vaccine can lead to regaining of its virulence creates safety concerns precluding many vaccines from clinical application. We introduce a novel approach to control HIV‐1 replication, which entails the manipulation of essential HIV‐1 protein biosynthesis through unnatural amino acid (UAA*)‐mediated suppression of genome‐encoded blank codon. We successfully demonstrate that HIV‐1 replication can be precisely turned on and off in vitro.  相似文献   

20.
Viruses occur in a great variety of shapes and sizes, but for all their diversity in appearance they possess certain characteristics in common: all viruses contain a single nucleic acid molecule – deoxyribonucleic acid (DNA) or ribonucleic acid (RNA) – surrounded by a protective protein coat. Among other things, the protein coat enables the genetic information stored in the nucleic acid to enter a host cell in a usable state, where it can initiate the reproduction of identical virus particles. After penetration of the cell the foreign genetic material of the virus particle first induces the synthesis of macromolecules not normally present in the cell: the viral nucleic acid undergoes replication and very many copies are produced, the protein of the virus coat is synthesized, and then these components are assembled to form a new generation of infectious virus particles. Most viruses also exhibit certain common structural features: their protein coat is built up from subunits arranged in helical or icosahedral fashion around the genetic material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号