首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

This paper aims to evaluate the influence of three kinds of sulfates from the green production of cement on its sintering and hydration. The properties of clinker and hydration were monitored by thermogravimetric and differential thermal analysis (TG–DTA), X-ray diffraction, X-ray fluorescence and isothermal conduction calorimeter. Results indicate that gypsum lowers the decomposition temperature of CaCO3 and all these Sulfates will enhance the solid-phase reaction but increase melting temperature. Sulfates reduce the content of C3S, but K2SO4 and 2CaSO4·K2SO4 is conducive to the formation of β-C2S. The hydration induction period is shortened by the sulfates. K2SO4 and 2CaSO4·K2SO4 improve the early hydration of clinker, but gypsum may lightly reduce the hydration reactivity of clinker in acceleration period. 2CaSO4·K2SO and K2SO can significantly accelerate the compressive strength development of cement clinker before 3 d; by contrast, gypsum is detrimental for that. The precipitation of hydration products (CH and C–S–H) in clinker with sulfates is more than that of clinker without sulfates at 9 h. K2SO4 can accelerate the hydration of clinker without forming ettringite.

  相似文献   

2.
Potassium sulfate is used to produce multicomponent fertilizers, free of chlorides. The desalting out of potassium sulfate from an aqueous solution of potassium hydrosulfate was conducted using 40 mass %, 45 mass %, or 50 mass % aqueous solutions of either methanol or propan-2-ol. Composition of the resultant precipitate was analyzed using chemical methods and XRD analysis. The results of the XRD analysis revealed that the main precipitate phase is K2SO4. Small amounts of K5H3(SO4)4 were detected when the desalting out was carried out from 2.5 M KHSO4 solution using 40 mass % and 50 mass % methanol solution. When the amount of potassium bisulfate in the solution increased to 3.5 M and 3.8 M, the main phase consisted of K3H(SO4)2. Generally, the desalting out process using propan-2-ol caused the formation of K3H(SO4)2. Potassium sulfate was obtained only by desalting out the 2.5 M KHSO4 solution using 50 mass % aqueous propan-2-ol. Presented at the 34th International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 21–25 May 2007.  相似文献   

3.
Quantitative volatilization of NaCl and KCI occurs between 900 and 1200°. CaCl2 and MgCl2 are converted to the oxides at lower temperatures. CaSO4, Na2SO4 and K2SO4 require the admixture of quartz to catalyse their decomposition with a total loss of SO3 between 1150 and 1335°. MgSO4 does not require quartz for its decomposition. The catalytic effects of Al2O3 and Fe2O3 on sulphate decomposition were also examined. The findings were applied to the analysis of saline soils. The thermogravimetric determination of chlorides in soils is subject to several interferences, but the conditions are more favourable for sulphates.  相似文献   

4.
Calorimetric measurements have been performed to determine the heat of dissolution of polyhalite K2SO4 · MgSO4 · 2CaSO4 · 2H2O and its analogues K2SO4 · MSO4 · 2CaSO4 · 2H2O (M = Mn, Co, Ni, Cu, and Zn) at T = 298.15 K. The dissolution experiments were carried out in NaClO4 solution with varying concentrations (0.5 to 2.0) mol kg?1. All polyhalites dissolve exothermically. Exothermicity increases with concentration of NaClO4. An extrapolation to infinite dilution was done using the SIT model.Within the limits of experimental uncertainty, the enthalpies of dissolution for the triple salts K2MgCa2(SO4)4 · 2H2O with M = Mg, Mn, Ni, and Zn coincide. The value for the cobalt salt is noticeably less exothermic. Dissolution enthalpy of leightonite K2CuCa2(SO4)4 · 2H2O, which does not crystallize in the polyhalite structure, deviates considerably within the series.  相似文献   

5.
Summary Solubility of calcium sulfate in concentrated aqueous chloride solutions is of particular significance in chloride hydrometallurgy and various crystallization processes, such as the production of potassium sulfate from phosphogypsum and potassium chloride. This paper examines an example of the second type of application in which gypsum and potassium chloride are reacted to form K2SO4. The solubility of phosphogypsum in aqueous solutions of KCl, HCl, and mixtures of both has first been measured at various temperatures and concentrations. The parameters investigated are HCl concentration up to 6M, KCl concentration up to 180 g L-1 and temperature from 25 to 80°C. In addition, the influence of co-existing chloride salts, such as (HCl+KCl), on the solubility of calcium sulfate is estimated from 25 to 80°C. The solubility increases obviously with the temperature increment as it does initially with acid concentration, reaching a maximum of about 3M HCl, 130 g L-1 KCl and then drops. At the same time, the solubility of CaSO4·2H2O decreases with increasing KCl concentration.  相似文献   

6.
Summary.  Calcium sulfate occurs in nature in form of three different minerals distinguished by the degree of hydration: gypsum (CaSO4·2H2O), hemihydrate (CaSO4·0.5H2O) and anhydrite (CaSO4). On the one hand the conversion of these phases into each other takes place in nature and on the other hand it represents the basis of gypsum-based building materials. The present paper reviews available phase diagram and crystallization kinetics information on the formation of calcium sulfate phases, including CaSO4-based double salts and solid solutions. Uncertainties in the solubility diagram CaSO4–H2O due to slow crystallization kinetics particularly of anhydrite cause uncertainties in the stable branch of crystallization. Despite several attempts to fix the transition temperatures of gypsum–anhydrite and gypsum–hemihydrate by especially designed experiments or thermodynamic data analysis, they still vary within a range from 42–60°C and 80–110°C. Electrolyte solutions decrease the transition temperatures in dependence on water activity. Dry or wet dehydration of gypsum yields hemihydrates (α-, β-) with different thermal and re-hydration behaviour, the reason of which is still unclear. However, crystal morphology has a strong influence. Gypsum forms solid solutions by incorporating the ions HPO4 2−, HAsO4 2−, SeO4 2−, CrO4 2−, as well as ion combinations Na+(H2PO4) and Ln3+(PO4)3−. The channel structure of calcium sulfate hemihydrate allows for more flexible ion substitutions. Its ion substituted phases and certain double salts of calcium sulfate seem to play an important role as intermediates in the conversion kinetics of gypsum into anhydrite or other anhydrous double salts in aqueous solutions. The same is true for the opposite process of anhydrite hydration to gypsum. Knowledge about stability ranges (temperature, composition) of double salts with alkaline and alkaline earth sulfates (esp. Na2SO4, K2SO4, MgSO4, SrSO4) under anhydrous and aqueous conditions is still very incomplete, despite some progress made for the systems Na2SO4–CaSO4 and K2SO4–CaSO4–H2O. Corresponding author. E-mail: daniela.freyer@chemie.tu-freiberg.de Received December 17, 2002; accepted January 10, 2003 Published online April 3, 2003  相似文献   

7.
Polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) and analogue triple salts, where Mg2+ is substituted by Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, have been synthesized. The salts were characterized by thermal analysis, Raman spectroscopy and X-ray powder diffraction. Diffraction patterns and Raman spectra resemble those of natural polyhalite, except K2SO4 · CuSO4 · 2CaSO4 · 2H2O. The latter corresponds to the mineral leightonite, which is structurally different.  相似文献   

8.
Preparation and Characterization of Calcium Hydrogen Sulfate CaSO4 · H2SO4 was identified as calcium hydrogen sulfate whereas CaSO4 · 3 H2SO4 is an adduct of CaSO4 with H2SO4. Depending on the excessive amount of H2SO4 both compounds exist side by side up to a temperature of 343 K, whereas above this temperature only Ca(HSO4)2 is stable. The DTA curve of Ca(HSO4)2 shows two maxima at 488 K and 523 K, according to the separation of H2O under formation of pyrosulfate and decomposition of this compound under elimination of SO3. In comparison with other hydrogen sulfates Ca(HSO4)2 shows a considerable increased O? H distances. The d-values of Ca(HSO4)2 are calculated and represented.  相似文献   

9.
The formation of a new sulfate compound K4H2(SO4)3 is obtained by evaporation at 25°C of an aqueous solution, which was formed by a mixture of K2SO4 and H2SO4. The characterization of this solid is carried out by X-ray diffraction, thermal and infrared analyzes. The heat treatment was carried out in interval 25–700°C; the end product of the thermal evolution is K2SO4. The vibration bands relating to SO4 and OH groups were highlighted by the infrared spectroscopy.Moreover, one study of ionic conductivity on this solid compound was carried out according to the temperature in interval 25–80°C. Its activation energy is 0.47 eV. The X-ray intensities collection obtained on a monocrystal of K4H2(SO4)3 gives the following cell parameters: a=7.035(5), b=19.751(4), c=23.466(2) Å, β=95.25(1)°.  相似文献   

10.
As one of the oldest species, horsetail grass (Equisetum ramosissimum Desf.) is known as a living fossil plant, dating back to the Mesozoic era. Horsetail grass is also considered one of the most important sources of bio-silica due to its ability to accumulate high amounts of silica in all parts of the plant; various minerals can also be isolated by heat treatment. Fresh and aged horsetail grass stored for 2 years under ambient conditions was investigated by synchrotron powder X-ray diffraction (PXRD). Clear crystallites were not observed in a fresh sample stored at room temperature; surprisingly, high amounts of gypsum (CaSO4·2H2O) and syngenite (K2Ca[SO4]2·H2O) were observed in the 2-day dried and 2-year aged samples, respectively. However, crystalline silica materials were not observed. In addition, in situ thermal treatment of up to 700°C was applied to investigate the crystals and phase transitions by focusing the X-ray beam onto a single stem. In situ synchrotron PXRD revealed that dehydration occurred in gypsum in the 2-day dried sample with an increase in temperature to hemihydrate (CaSO4·xH2O, 0.5 ≤ x ≤ 0.8) and anhydrite (CaSO4). On the other hand, syngenite was transformed to calciolangbeinite (K2Ca2[SO4]3) at high temperatures in 2-year aged horsetail grass.  相似文献   

11.
Aqueous solutions of sodium chloride, potassium chloride, sodium sulfate, and potassium sulfate can be mixed in six ways to give ternary mixtures. Two of these have already been studied and results are now presented for the remaining four systems: H2O–NaCl–K2SO4, H2O–Na2SO4–K2SO4, H2O–KCl–Na2SO4, and H2O–KCl–K2SO4.  相似文献   

12.
A new type of potassium ion conducting polycrystalline solid electrolyte was prepared by forming the Gd2O3–KNO2 solid solution. Since KNO2 is dissolved in the Gd2O3 crystal lattice scale, a considerable enhancement in K+ ion conductivity was successfully realized. The K+ ion conductivity is more than three orders of magnitude higher than that of the well-known K+ ion conducting K2SO4 polycrystal solid and the value also exceeds that of K+–β-alumina single crystal, demonstrating the highest ion conductivity among the K+ ion conducting solid series.  相似文献   

13.
Calcium sulfate whiskers can be used as the reinforcing agents in many composites, such as polymers, ceramics, cements, and papers, etc. This paper investigated the feasibility of preparing calcium sulfate whiskers using desulfurization gypsum as the raw material. The desulfurization gypsum composed mainly of CaSO4·2H2O (93.45 wt%) and CaCO3 (1.76 wt%) were treated with dilute H2SO4 at room temperature to convert CaCO3 to CaSO4; the latter was then treated at 110?C150 °C to form CaSO4·0.5H2O whiskers. The removal of the CaCO3 impurity from the desulfurization gypsum favored the formation of CaSO4·0.5H2O whiskers with high aspect ratios.  相似文献   

14.
Phase equilibria of the Na,K,Mg,Ca||SO4,Cl–H2O system at 50°С in the polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) crystallization region were studied using the translation method. Polyhalite was found to be involved, as an equilibrium phase of the title system at 50°С, in 17 invariant points, 36 monovariant curves, and 24 divariant fields. A fragment of equilibrium phase diagram of the title system in the polyhalite crystallization region was constructed.  相似文献   

15.
The metastable solubilities and the physicochemical properties including density, refractive index, pH and conductivity in the ternary system (Li2SO4 + K2SO4 + H2O) at T = 308.15 K were determined experimentally using the isothermal evaporation method, and the metastable phase diagram and the physicochemical properties versus composition diagram were plotted. In the metastable phase diagram, there are two invariant points, three univariant curves and three crystallization regions corresponding to lithium sulfate monohydrate (Li2SO4 · H2O), double salt (K2SO4 · Li2SO4) and arcanite (K2SO4). It was found that the double salt of K2SO4·Li2SO4 belongs to the incongruent double salt, and the hydrate of Li2SO4 · H2O belongs to hydrate type I. On the basis of Pitzer model of the electrolyte solution theory, the mixing-ion parameter of θLi,K, \({\Psi _{Li,K,S{O_4}}}\) and the metastable equilibrium constants of the solid phases K2SO4, Li2SO4 · K2SO4 and Li2-SO4 · H2O at 308.15 K were obtained for the first time. The calculated metastable solubility data for this ternary system at 308.15 K agree well with the experimental values, and this result indicates that the mixing-ion parameters and the metastable equilibrium constants obtained in this work are reliable.  相似文献   

16.
Metastable equilibrium solubilities and properties such as densities, conductivity, pH, refractive index, and viscosity of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram was plotted. In the phase diagram, there are three invariant points, seven univariant curves, five fields of crystallization: Li2SO4 · H2O, K2SO4, Li2B4O7 · 3H2O, K2B4O7 · 4H2O, and K2SO4 · Li2SO4. The double salt K2SO4 · Li2SO4 was found in the quaternary system metastable equilibria. Lithium sulfate (Li2SO4) has the highest concentration and strong salting-out effects on other salts.Also, the relationship diagram between the properties and the ion concentration of solution was constructed. It can be seen from the relationship diagram that the equilibrium solution density values, viscosity values, and refractive index values are increased apparently with the rise of sulfate ion concentration, reaching the maximum values at eutonic point F3. Electrical conductivity values and pH values, however, fall down with the rise of ion concentration on the whole.  相似文献   

17.
Solubilities of ternary systems Li+,K+/SO2-4-H2O (1) and Li+,Mg2+/SO42--H2O (2) were investigated by isothermal method at 25°C. Physico-chemical properties of solutions, such as density, refractive index, viscosity, conductivity and pH, were determined. Phase diagram of the system (1) consists of three solubility branches and three crystallization fields corresponding to K2SO4, Li2SO4·H2O and LiKSO4. LiKSO4 is an incongruent compound, and its transition point is estimated graphically to be 45.5–46.0°C. No solid solution of LiKSO4 with Li2SO4·H2O was found in the system. The system (2) is a simple eutonic type. Pitzer model of electrolyte solution was used to check the obtained solubilities. Data comparison gives good agreement. Two equations were used to correlate density, refractive index of the solution with its composition. Differences between measured and calculated values are less than 0.6% for density, 0.15% for the latter.  相似文献   

18.
Potassium oxosulfatovanadate(V) K3VO2(SO4)2 has been obtained by solid-phase synthesis from K2SO4, K2S2O7, and V2O5 (2: 1: 1), and its formation conditions, crystal structure, and physiochemical properties have been studied. The conversions of K3VO2(SO4)2 in contact with potassium vanadates and other potassium oxosulfatovanadates(V) are considered in terms of phase relations in the K2O-V2O5-SO3 system, which models the active component of vanadium catalysts for sulfur dioxide oxidation into sulfur trioxide. The X-ray diffraction pattern of K3VO2(SO4)2 is indexed in the monoclinic system (space group P21) with unit cell parameters of a = 10.0408(1) Å, b = 7.2312(1) Å, c = 7.3821(1) Å, β = 104.457(1)°, Z = 2, and V = 519.02 Å3. The crystal structure of K3VO2(SO4)2 is built from [VO2(SO4)2]3? complex anions, in which the vanadium atom is in an octahedral oxygen environment formed by two terminal oxygen atoms (V-O(6) = 1.605(7) Å, V-O(10) = 1.619(7) Å and four oxygen atoms of the two chelating sulfate anions. The vibrational spectra of K3VO2(SO4)2 are analyzed using these structural data.  相似文献   

19.
Polyhalite (K2SO4 · MgSO4 · 2CaSO4 · 2H2O) and analogue triple salts, where Mg2+ is substituted by Mn2+, Fe2+, Co2+, Ni2+, Cu2+ and Zn2+, have been synthesized. The salts were characterized by thermal analysis, Raman spectroscopy and X-ray powder diffraction. Diffraction patterns and Raman spectra resemble those of natural polyhalite, except K2SO4 · CuSO4 · 2CaSO4 · 2H2O. The latter corresponds to the mineral leightonite, which is structurally different. For polyhalite analogues the cell parameters of the triclinic unit cell have been determined from the powder diffraction patterns. The length of the unit cell vectors varies regularly with the ionic radius of the substituted ion M 2+ and is explained by changes in the extension of the coordination octahedron of M 2+. Thereby increasing distances of the coordinated water molecules at M 2+ parallel with decreasing dehydration temperatures of the corresponding polyhalite. Correspondence: Daniela Freyer, Institut für Anorganische Chemie, TU Bergakademie Freiberg, 09599 Freiberg, Germany.  相似文献   

20.
The solubility of calcium sulfate dihydrate (CaSO4·2H2O) and calcium hydroxide (Ca(OH)2) in alkali solutions is essential to understand their desilication behavior from Bayer liquor. In this work, solubilities of calcium sulfate dihydrate and calcium hydroxide for the ternary systems of CaSO4·2H2O–NaOH–H2O, CaSO4·2H2O–KOH–H2O, and Ca(OH)2–NaOH–H2O were measured by using the classic isothermal dissolution method over the temperature range of 25–75 °C. The Pitzer model embedded in Aspen Plus platform was used to model the experimental solubility data for these systems. The experimental solubility data was employed to obtain the new binary interaction parameters for Ca(OH)+–OH, Ca(OH)+–Ca2+ and Ca(OH)+–K+, suggesting that the species Ca(OH)+ is a dominant species in simulated solubility for alkali systems. Validation of the parameters was performed by predicting the solubility for the ternary systems of Ca(OH)2–NaOH–H2O, CaSO4·2H2O–NaOH–H2O and CaSO4·2H2O–KOH–H2O with the overall average relatively deviation (ARD) of 2.12%, 0.75% and 1.63%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号