首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
A new structure for an adenine-selective host molecule, featuring the pertinent link of five-six-five-membered heteroaromatic rings and two carbamoyl NH sites, was developed. This structure provides a correctly oriented array of complementary hydrogen bonding sites for the adenine nucleobase, which exploits both Watson-Crick and Hoogsteen-type interactions. The complexation with adenine nucleobases by multiple hydrogen bonding was supported by (1)H NMR spectroscopy. This type of host displayed high selectivity in complexation, with an accompanying fluorescent response to lipophilized adenosine in CHCl(3). Furthermore, a remarkably selective potentiometric response was attained for adenosine 5'-monophosphate over 5'-GMP, 5'-CMP, and 5'-UMP by using an ion-selective electrode with a PVC-supported solvent polymeric membrane. This indicates recognition of water-soluble nucleotide guests through the membrane-water interface. These findings are expected to form a reliable basis for the development of artificial sensing systems for mononucleotides in biological systems.  相似文献   

2.
The rate constants for the condensation reaction of the 5'-phosphorimidazolide of adenosine (ImpA) to form dinucleotides and oligonucleotides have been measured in the presence of Na(+)-volclay (a Na(+)-montmorillonite) in pH 8 aqueous solution at 25 degrees C. The rates of the reaction of ImpA with an excess of adenosine 5'-monophosphoramidate (NH2pA), P1,P2-diadenosine 5',5'-pyrophosphate (A5'ppA), or adenosine 5'-monophosphate (5'-AMP or pA) in the presence of the montmorillonite to form NH2pA3'pA, A5'ppA3'pA, and pA3'pA, respectively, were measured. Only 3',5'-linked products were observed. The magnitude of the rate constants decrease in the order NH2pA3'pA > A5'-ppA3'pA > pA3'pA. The binding of ImpA to montmorillonite was measured, and the adsorption isotherm was determined. The binding of ImpA to montmorillonite and the formation of higher oligonucleotides is not observed in the absence of salts. Mg2+ enhances binding and oligonucleotide formation more than Ca2+ and Na+. The rate constants for the oligonucleotide formation were determined from the reaction products formed from 10 to 40 mM ImpA in the presence of Na(+)-montmorillonite using the computer program SIMFIT. The magnitudes of the rate constants for the formation of oligonucleotides increased in the order 2-mer < 3-mer < 4-mer ... 7-mer. The rate constants for dinucleotide and trinucleotide formation are more than 1000 times larger than those measured in the absence of montmorillonite. The rate constants for the formation of dinucleotide, trinucleotide, and tetranucleotide are 41,2.6, and 3.7 times larger than those for the formation of oligo(G)s with a poly(C) template. The hydrolysis of ImpA was accelerated 35 times in the presence of the montmorillonite. The catalytic ability of montmorillonite to form dinucleotides and oligonucleotides is quantitatively evaluated and possible pathways for oligo(A) formation are proposed.  相似文献   

3.
Several experimental and theoretical studies have shown that N(1) is the first site for protonation in adenine and N(9)-substituted adenine derivatives. N(7) is considered the site for the second protonation to yield dipositive cations. Results are reported here which indicate that this protonation pattern is altered in N(7)-substituted adenine derivatives. In particular, an X-ray diffraction analysis of the structure of 7-methyladenine dihydrochloride, [C6N5H7]Cl2, definitively shows that the sites for protonation are N(3), as opposed to N(1), and N(9). Theoretical calculations of the molecular electrostatic potential in various systems suggest that such changes in preferred protonation sites should be expected, in general, when a modification of the molecular structure creates adjacent sites with similar reactivity, such as the N(3) and N(9) sites in 7-methyladenine.  相似文献   

4.
Excited-state potential energy surfaces of adenine, protonated adenine, and their N9-methylated analogs are explored by means of a complete active space (CAS) and time-dependent density functional theory (TD-DFT) study to understand the dynamics associated with internal conversion. After photoexcitation of the ground-state molecules to the S(1) state, the nuclear motions that are responsible for taking the wavepacket out of the Franck-Condon region are either an H--N9/C--N9 stretch or a ring-puckering motion that leads to pyramidalization. These motions lead to accessible conical intersections with the ground-state surface. The results are used to successfully interpret previous measurements on the photodissociation of adenosine 5'-monophosphate nucleotide anions and cations, where the latter react in a highly nonstatistical manner.  相似文献   

5.
The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.  相似文献   

6.
The acidities of multiple sites in the purine nucleobase adenine (1) and adenine alkyl derivatives 9-ethyladenine (2), 3-methyladenine (3), 1-methyladenine (4), and N,N-dimethyladenine (5) have been investigated for the first time, using computational and experimental methods to provide an understanding of adenine reactivity. We have previously measured two acidic sites on adenine, with the N9 site being 19 kcal mol(-)(1) more acidic than the N10 site (333 +/- 2 versus 352 +/- 4 kcal mol(-)(1), respectively). In this work, we have established that 9-ethyladenine has two sites more acidic than water: the N10 (352 +/- 4 kcal mol(-)(1)) and the C8 (374 +/- 2 kcal mol(-)(1)). We have likewise measured two acidities for 3-methyladenine, the N10 (347 +/- 4 kcal mol(-)(1)) and the C2 (370 +/- 3 kcal mol(-)(1)). For 1-methyladenine and N,N-dimethyladenine, we measure the N9H acidity to be 331 +/- 2 and 333 +/- 2 kcal mol(-)(1), respectively. We believe that the bracketing of only one site for the latter species is a kinetic effect, which we discuss further in the paper. Computationally, we have found the interesting result that some of the vinylic C-H sites in these purine bases are predicted to be much more acidic than water (DeltaH(acid) = 390.7 kcal mol(-)(1)) in the gas phase, on the order of 373 kcal mol(-)(1). The acidic vinylic C-H sites are always adjacent to an N-R group, and this pattern is maintained regardless of whether the site is on the five- or six-membered ring of the purine. Vinylic C-H sites elsewhere on the purine have calculated acidities of about 400 kcal mol(-)(1). The differing acidities are interpreted through electrostatic potential calculations. We also relate our results to the intriguing biochemical decarboxylation of orotate ribose monophosphate, which involves a vinylic anion adjacent to an N-R group; this decarboxylation is the last step in the de novo biosynthesis of pyrimidine nucleotides, and the enzyme that catalyzes the reaction, orotate ribose monophosphate decarboxylase, has been the subject of intense study recently, as its mechanism remains elusive.  相似文献   

7.
We studied the electrochemical behaviour of adenine derivates (adenosine, 2‐aminopurine, 2,6‐diaminopurine, 6‐benzyl‐aminopurine, adenosine monophosphate, cyclic adenosine monophosphate, nicotinamide adenine dinucleotide, adenosine triphosphate, S‐adenosyl‐L ‐methionine, and synthetic derivatives AD‐3, AD‐6 and AD‐9) using flow injection analysis with electrochemical detection using a glassy carbon electrode. The influences of pH, flow rate and potential on the signal height of the studied derivates were tested. The optimal pH was 3, the flow rate of the mobile phase 0.75 mL min?1 and the potential 1100 mV. Further, we attempted to characterize each of the studied derivatives by mathematical equations and classic analytical parameters. The lowest detection limit was estimated for adenine as 0.9 nM and 2‐aminopurine as 0.5 nM.  相似文献   

8.
The DNA base adenine and four monomethylated adenines were studied in solution at room temperature by femtosecond pump-probe spectroscopy. Transient absorption at visible probe wavelengths was used to directly observe relaxation of the lowest excited singlet state (S(1) state) populated by a UV pump pulse. In H(2)O, transient absorption signals from adenine decay biexponentially with lifetimes of 0.18 +/- 0.03 ps and 8.8 +/- 1.2 ps. In contrast, signals from monomethylated adenines decay monoexponentially. The S(1) lifetimes of 1-, 3-, and 9-methyladenine are similar to one another and are all below 300 fs, while 7-methyladenine has a significantly longer lifetime (tau = 4.23 +/- 0.13 ps). On this basis, the biexponential signal of adenine is assigned to an equilibrium mixture of the 7H- and 9H-amino tautomers. Excited-state absorption (ESA) by 9-methyladenine is 50% stronger than by 7-methyladenine. Assuming that ESA by the corresponding tautomers of adenine is unchanged, we estimate the population of 7H-adenine in H(2)O at room temperature to be 22 +/- 4% (estimated standard deviation). To understand how the environment affects nonradiative decay, we performed the first solvent-dependent study of nucleobase dynamics on the ultrafast time scale. In acetonitrile, both lowest energy tautomers of adenine are present in roughly similar proportions as in water. The lifetimes of the 9-substituted adenines depend somewhat more sensitively on the solvent than those of the 7-substituted adenines. Transient signals for adenine in H(2)O and D(2)O are identical. These solvent effects strongly suggest that excited-state tautomerization is not an important nonradiative decay pathway. Instead, the data are most consistent with electronic energy relaxation due to state crossings between the optically prepared (1)pipi* state and one or more (1)npi* states and the electronic ground state. The pattern of lifetimes measured for the monomethylated adenines suggests a special role for the (1)npi* state associated with the N7 electron lone pair.  相似文献   

9.
Two enzymes of unknown function from the amidohydrolase superfamily were discovered to catalyze the deamination of N-6-methyladenine to hypoxanthine and methyl amine. The methylation of adenine in bacterial DNA is a common modification for the protection of host DNA against restriction endonucleases. The enzyme from Bacillus halodurans, Bh0637, catalyzes the deamination of N-6-methyladenine with a k(cat) of 185 s(-1) and a k(cat)/K(m) of 2.5 × 10(6) M(-1) s(-1). Bh0637 catalyzes the deamination of N-6-methyladenine 2 orders of magnitude faster than adenine. A comparative model of Bh0637 was computed using the three-dimensional structure of Atu4426 (PDB code: 3NQB) as a structural template and computational docking was used to rationalize the preferential utilization of N-6-methyladenine over adenine. This is the first identification of an N-6-methyladenine deaminase (6-MAD).  相似文献   

10.
A rapid and sensitive automated system for measuring cyclic adenosine 3',5'-monophosphate (cAMP) synthesized from either radiolabelled adenine or adenosine 5'-triphosphate (ATP) in intact and broken cell tissue preparations, respectively, is described. After incubation with radiolabelled precursor, tissue samples are deproteinized and then injected directly onto a reversed-phase high-performance liquid chromatographic column. The column effluent fraction which contains cAMP is collected into scintillation vials and assayed for tritium by liquid scintillation spectrometry. Since the high-performance liquid chromatographic and fraction collection procedures are automated, over fifty samples can be analyzed in duplicate in a single day. The utility of this assay is illustrated by investigations of the effects of beta-adrenergic receptor stimulation on cAMP synthesis in tissue slices prepared from rat cerebral cortex and dopamine on cAMP synthesis in striatal membrane preparations.  相似文献   

11.
The binding affinity and relative maximal efficacy of human A3 adenosine receptor (AR) agonists were each subjected to ligand-based three-dimensional quantitative structure-activity relationship analysis. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) used as training sets a series of 91 structurally diverse adenosine analogues with modifications at the N6 and C2 positions of the adenine ring and at the 3', 4', and 5' positions of the ribose moiety. The CoMFA and CoMSIA models yielded significant cross-validated q2 values of 0.53 (r2 = 0.92) and 0.59 (r2 = 0.92), respectively, and were further validated by an external test set (25 adenosine derivatives), resulting in the best predictive r2 values of 0.84 and 0.70 in each model. Both the CoMFA and the CoMSIA maps for steric or hydrophobic, electrostatic, and hydrogen-bonding interactions well reflected the nature of the putative binding site previously obtained by molecular docking. A conformationally restricted bulky group at the N6 or C2 position of the adenine ring and a hydrophilic and/or H-bonding group at the 5' position were predicted to increase A3AR binding affinity. A small hydrophobic group at N6 promotes receptor activation. A hydrophilic and hydrogen-bonding moiety at the 5' position appears to contribute to the receptor activation process, associated with the conformational change of transmembrane domains 5, 6, and 7. The 3D-CoMFA/CoMSIA model correlates well with previous receptor-docking results, current data of A3AR agonists, and the successful conversion of the A3AR agonist into antagonists by substitution (at N6) or conformational constraint (at 5'-N-methyluronamide).  相似文献   

12.
Gas-phase hydrogen/deuterium exchange reactions of (de)protonated (sodiated) adenosine-5'-mono-, di- and triphosphate ions with CD(3)OD, CD(3)CO(2)D and ND(3) were achieved using a combination of electrospray ionization and Fourier transform ion cyclotron resonance mass spectrometry. The reaction kinetics are dependent on factors such as the charge state, the phosphate chain length, the properties of the exchange reactants and the sodium content. The results indicate that the overall H/D exchange may involve specific sites even if endowed with high energetic barriers. The enhanced reactivity exhibited by adenosine polyphosphate ions compared with adenosine-5'-monophosphate suggests a critical role of the polyphosphate chain in rendering conformationally accessible remote H-donor sites. Low-energy collision-induced dissociation of (sodiated) adenine nucleotides anions supports the aptitude of the (poly)phosphate chain in probing distant sites via the intermediacy of a cyclic structure.  相似文献   

13.
The reactions of a 5'-cap model compound P1-(7-methylguanosine) P3-guanosine 5',5'-triphosphate, m7GpppG, were studied in the presence of three different macrocyclic amines (2-4) under neutral conditions. The only products observed in the absence of the macrocycles resulted from the base-catalysed imidazole ring-opening and the acid-catalysed cleavage of the N7-methylguanosine base, whereas in the presence of these catalysts hydrolysis of the triphosphate bridge predominated. The latter reaction yielded guanosine 5'-monophosphate, guanosine 5'-diphosphate, 7-methylguanosine 5'-monophosphate and 7-methylguanosine 5'-diphosphate as the initial products, indicating that both of the phosphoric anhydride bonds were cleaved. The overall catalytic activity of all three macrocycles was comparable. The hydrolysis to guanosine 5'-diphosphate and 7-methylguanosine 5'-monophosphate was slightly more favoured than the cleavage to yield guanosine 5'-monophosphate and 7-methylguanosine diphosphate. All the macrocycles also enhanced the subsequent hydrolysis of the nucleoside diphosphates, 2 being more efficient than 3 and 4.  相似文献   

14.
The gas-phase acidities of adenine, 9-ethyladenine, and 3-methyladenine have been investigated for the first time, using computational and experimental methods to provide an understanding of the intrinsic reactivity of adenine. Adenine is found to have two acidic sites, with the N9 site being 19 kcal mol(-1) more acidic than the N10 site; the bracketed acidities are 333 +/- 2 and 352 +/- 4 kcal mol(-1), respectively. Because measurement of the less acidic site can be problematic, we benchmarked the adenine N10 measurement by bracketing the acidity of 9-ethyladenine, which has the N9 site blocked and allows for exclusive measurement of the N10 site. The acidity of 9-ethyladenine brackets to 352 +/- 4 kcal mol(-1), comparable to that of the N10 site of the parent adenine. Calculations and experiments with 3-methyladenine, a harmful mutagenic nucleobase, uncovered the surprising result that the most commonly written tautomer of 3-methyladenine is not the most stable in the gas phase. We have found that the most stable tautomer is the "N10 tautomer" 10, as opposed to the imine tautomer 3. The bracketed acidity of 10 is 347 +/- 4 kcal mol(-1). Since 10 is not a viable species in DNA, 3 is a likely tautomer; calculations indicate that this form has an extremely high acidity (320-323 kcal mol(-1)). The biological implications of these results, particularly with respect to enzymes that cleave alkylated bases from DNA, are discussed.  相似文献   

15.
Gold nanoparticles capped with simple adenosine derivatives can form colloidal aggregates in nonpolar solvents. Theoretical calculations indicate the formation of organic channels by the supramolecular assembly of the nanoparticles by means of hydrogen bonds between the adenine moieties. The aggregates were only negligibly sensitive to nPrOH, iPrOH, and tBuOH, whereas some showed a similar response to MeOH and EtOH, and others showed high selectivity toward MeOH. DNA nucleoside derivatives (1‐(2‐deoxy‐β‐D ‐ribofuranosyl)‐5‐methyluracil and 2′,3′‐O‐isopropylideneadenosine) as well as thymine and other aromatic compounds such as pyrene derivatives (pyrene, 1‐chloropyrene, 1‐hydroxypyrene, (1‐pyrenyl)methanol, and 2‐hydroxynapthalene) did not induce disassembly of the nanoparticle aggregates. Data suggest that the nucleoside channels allow access to alcohols according to their size, and an efficient interaction between the alcohol and the adenine units destabilizes the hydrogen bonds, which eventually leads to nanoparticle disassembly.  相似文献   

16.
Photoelectron spectra of adenine-formic acid (AFA(-)) and 9-methyladenine-formic acid (MAFA(-)) anionic complexes have been recorded with 2.540 eV photons. These spectra reveal broad features with maxima at 1.5-1.4 eV that indicate formation of stable valence anions in the gas phase. The neutral and anionic complexes of adenine/9-methyladenine and formic acid were also studied computationally at the B3LYP, second-order M?ller-Plesset, and coupled-cluster levels of theory with the 6-31++G** and aug-cc-pVDZ basis sets. The neutral complexes form cyclic hydrogen bonds, and the most stable dimers are bound by 17.7 and 16.0 kcal/mol for AFA and MAFA, respectively. The theoretical results indicate that the excess electron in both AFA(-) and MAFA(-) occupies a pi* orbital localized on adenine/9-methyladenine, and the adiabatic stability of the most stable anions amounts to 0.67 and 0.54 eV for AFA(-) and MAFA(-), respectively. The attachment of the excess electron to the complexes induces a barrier-free proton transfer (BFPT) from the carboxylic group of formic acid to a N atom of adenine or 9-methyladenine. As a result, the most stable structures of the anionic complexes can be characterized as neutral radicals of hydrogenated adenine (9-methyladenine) solvated by a deprotonated formic acid. The BFPT to the N atoms of adenine may be biologically relevant because some of these sites are not involved in the Watson-Crick pairing scheme and are easily accessible in the cellular environment. We suggest that valence anions of purines might be as important as those of pyrimidines in the process of DNA damage by low-energy electrons.  相似文献   

17.
High-resolution vibrational spectra of nucleic acid components adsorbed on a silver electrode were obtained using a spectroelectrochemical method based on the large-intensity enhancement for Raman scattering at electrode surfaces.The laser surface Raman spectra of purine, adenine, adenosine, deoxyadenosine, adenine mononucleotides, adenylyl-3′, 5′-adenosine and polyriboadenylic acid were recorded in the range of 150–3500 cm?1. The intensities of the vibrational bands were highly dependent upon the electrochemical preparation of the electrode, the applied potential and the nature of the adsorbate species. High-intensity spectra in rather dilute bulk solutions were obtained.The phosphate derivatives of adenosine exhibited strongly enhanced Raman scattering. Spectral band frequencies corresponded closely with normal Raman spectra of these molecules in solution. The adenine ring breathing mode at 740 cm?1 and the adenine ring skeletal vibration at 1335 cm?1 produced prominent Raman scattering. A strong band at about 240 cm?1 for the adenine mononucleotides was attributed to silver/adsorbed phosphate group vibrations.  相似文献   

18.
Synchrotron radiation circular dichroism (SRCD) spectra of ribose and deoxyribose sugars, adenosine, AMP and dAMP nucleotides and cyclic derivatives were measured in the vacuum ultraviolet region (down to 168 nm for sugars and 175 nm for adenine derivatives) and at different pH values (3, 6-7, 9-10) and temperatures (between 5 and 45 degrees C). The information content in the VUV region is important since the CD bands strongly depend on the chemical structure of the sugar, the presence and orientation of a phosphate group and the protonation state of adenine. On the other hand, single or double deprotonation of the phosphoric acid group has no influence on the spectra. We assign the vacuum ultraviolet (VUV) CD bands of the nucleoside and nucleotides to be due mainly to n-->pi* transitions in the adenine nucleobase based on a comparison with the absorption spectra. The CD bands of the sugars are due to n(O -->sigma*) transitions and are much smaller than the CD signal from the nucleotides in the VUV region. Bands are assigned to both pyranose and open-chain forms.  相似文献   

19.
Official Method 2011.21 is for the quantitation of the following nucleotides: adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP), uridine 5'-monophosphate (UMP), cytidine 5'-monophosphate (CMP), and inosine 5'-monophosphate (IMP) in infant formula and adult/pediatric nutritional formula. It uses hydrophilic interaction liquid chromatography with tandem mass spectrometry (HILIC-MS/MS). Preparation of the internal standards was conducted using centrifugal ultrafiltration and the standards are AMP- (13)C10, (15)N5; GMP-(13)C10, (15)N5; UMP-(13)C9, (15)N2; and15 CMP- (13)C9, (15)N3. Data were collected by using multiple reaction monitoring of the product ions of protonated molecules of the five nucleotides generated by positive-electrospray ionization. The HILIC conditions were conducted with ammonium formate (30 mmol/L) in water (pH 2.5, adjusted with formic acid) and methanol. The LOD and LOQ of the standard solution were 0.005-0.01 and 0.01-0.03 microg/mL, respectively. Recovery data were collected for intraday and interday testing and ranged from 98.1 to 108.9% with an RSD of 0.7-5.4%. The analytical range of the method is between 0.04 to 5 microg/mL for standard solution.  相似文献   

20.
A simple, rapid and accurate method for the simultaneous determination of four purine and pyrimidine bases (cytosine, 5-methylcytosine, adenine and N6-methyladenine) has been developed. The quantitative determination of these bases was accomplished by ion chromatography (IC) with direct conductivity detection (CD) based on their ionization in acidic medium without chemical suppression. The recovery of cytosine, 5-methylcytosine, and adenine in calf thymus DNA was more than 98% (n=3) and the relative standard deviation (RSD, n=5) less than 2.4%. In a single chromatographic run, the four bases could be separated and determined in less than 10 min. The detection limits were found to be 0.05 microg/mL for cytosine, 0.08 microg/mL for 5-methylcytosine, 0.07 microg/mL for adenine, and 0.07 microg/mL for N6-methyladenine. Linear ranges were 0.2-95.1 microg/mL for cytosine (r2=0.9996), 0.3-196.6 microg/mL for 5-methylcytosine (r2=0.9994), 0.3-105.5 microg/mL for adenine (r2=0.9998), and 0.3-159.1 microg/mL for N6-methyladenine (r2=0.9999). With the proposed method, purine and pyrimidine bases could be successfully detected in calf thymus DNA. We also determined these bases in calf thymus DNA using RP-HPLC. Compared to RP-HPLC, the IC method offers advantages such as high selectivity and simple mobile phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号