首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article we deal with non-smooth dynamical systems expressed by a piecewise first order implicit differential equations of the form
$$\begin{aligned} \dot{x}=1,\quad \left( \dot{y}\right) ^2=\left\{ \begin{array}{lll} g_1(x,y) \quad \text{ if }\quad \varphi (x,y)\ge 0 \\ g_2(x,y) \quad \text{ if }\quad \varphi (x,y)\le 0 \end{array},\right. \end{aligned}$$
where \(g_1,g_2,\varphi :U\rightarrow \mathbb {R}\) are smooth functions and \(U\subseteq \mathbb {R}^2\) is an open set. The main concern is to study sliding modes of such systems around some typical singularities. The novelty of our approach is that some singular perturbation problems of the form
$$\begin{aligned} \dot{x}= f(x,y,\varepsilon ) ,\quad (\varepsilon \dot{ y})^2=g ( x,y,\varepsilon ) \end{aligned}$$
arise when the Sotomayor–Teixeira regularization is applied with \((x, y) \in U\) , \(\varepsilon \ge 0\), and fg smooth in all variables.
  相似文献   

2.
Asymptotic solutions of linear systems of ordinary differential equations are employed to discuss the relationship of the solution of a certain “complete” boundary problem.
$$\begin{gathered} \left\{ \begin{gathered} {\text{ }}\frac{{d{\text{ }}x_1 }}{{d{\text{ }}t}} = A_{11} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{1p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \varepsilon ^{h_2 } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{21} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{2p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ {\text{ }} \vdots {\text{ }} \vdots {\text{ }} \vdots \hfill \\ \varepsilon ^{h_p } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{p1} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{pp} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \end{gathered} \right\} \hfill \\ {\text{ }}R(\varepsilon ){\text{ }}x(a,{\text{ }}\varepsilon ){\text{ }} + {\text{ }}S(\varepsilon ){\text{ }}x(b,{\text{ }}\varepsilon ) = c(\varepsilon ){\text{ }} \hfill \\ \end{gathered}$$  相似文献   

3.
In this paper we study the asymptotic behavior of solutions of the following nonautonomous wave equation with nonlinear dissipation.
$\left\{\begin{array}{ll} u_{tt}+\vert u_{t}\vert^{\alpha}u_{t}-\Delta u +f(u)=g(t,x),\quad{\rm in}\,\mathbb{R}_{+}\times\Omega,\\ \qquad\qquad u(t,x)=0,\quad\, {\rm on}\,\mathbb{R}_{+}\times\partial\Omega,\end{array}\right.$
where f is an analytic function, α is a small positive real and g(t, ·) tends to 0 sufficiently fast in L 2(Ω) as t tends to ∞.
We also obtain a general convergence result and the rate of decay of solutions for a class of second order ODE containing as a special case
$\left\{\begin{array}{ll} \ddot{U}(t)+\Vert\dot{U}(t)\Vert^{\alpha}\dot{U}(t)+\nabla F(U(t))=g(t),\quad t \in \mathbb{R}_+,\\ \qquad U(0)=U_{0}\,\in \mathbb{R}^{N},\quad\dot{U}(0)=U_{1}\in \mathbb{R}^{N}. \end{array}\right.$
  相似文献   

4.
Conditions guaranteeing asymptotic stability for the differential equation
$$\begin{aligned} x''+h(t)x'+\omega ^2x=0 \qquad (x\in \mathbb {R}) \end{aligned}$$
are studied, where the damping coefficient \(h:[0,\infty )\rightarrow [0,\infty )\) is a locally integrable function, and the frequency \(\omega >0\) is constant. Our conditions need neither the requirement \(h(t)\le \overline{h}<\infty \) (\(t\in [0,\infty )\); \(\overline{h}\) is constant) (“small damping”), nor \(0< \underline{h}\le h(t)\) (\(t\in [0,\infty )\); \(\underline{h}\) is constant) (“large damping”); in other words, they can be applied to the general case \(0\le h(t)<\infty \) (\(t\in [0,\infty \))). We establish a condition which combines weak integral positivity with Smith’s growth condition
$$\begin{aligned} \int ^\infty _0 \exp [-H(t)]\int _0^t \exp [H(s)]\,\mathrm{{d}}s\,\mathrm{{d}}t=\infty \qquad \left( H(t):=\int _0^t h(\tau )\,\mathrm{{d}}\tau \right) , \end{aligned}$$
so it is able to control both the small and the large values of the damping coefficient simultaneously.
  相似文献   

5.
In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving \(p(\cdot )\)-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
$$\begin{aligned} \left\{ \begin{array}{rcll} -{\text {div}}(a(|\nabla u|^{p(x)})|\nabla u|^{p(x)-2}\nabla u)&{}=&{}\lambda f(x,u) &{} \text{ in } \Omega ,\\ u&{}=&{}0 &{} \text{ on } \partial \Omega . \end{array} \right. \end{aligned}$$
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter \(\lambda >0\) small enough, and also that the solution blows up, in the Sobolev norm, as \(\lambda \rightarrow 0^{+}.\) Finally, by imposing additional hypotheses on the nonlinearity \(f(x,\cdot ),\) we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.
  相似文献   

6.
We study the large time behavior of non-negative solutions to the nonlinear diffusion equation with critical gradient absorption
$$\begin{aligned} \partial _t u-\Delta _{p}u+|\nabla u|^{q_*}=0 \quad \hbox {in}\, (0,\infty )\times \mathbb {R}^N, \end{aligned}$$
for \(p\in (2,\infty )\) and \(q_*:=p-N/(N+1)\). We show that the asymptotic profile of compactly supported solutions is given by a source-type self-similar solution of the p-Laplacian equation with suitable logarithmic time and space scales. In the process, we also get optimal decay rates for compactly supported solutions and optimal expansion rates for their supports that strongly improve previous results.
  相似文献   

7.
8.
In this paper, we consider the second KdV equation with the external parameters
$$\begin{aligned} u_{t} =\partial _x^5 u +(M_{\sigma }u+u^3)_{x}, \end{aligned}$$
under zero mean-value periodic boundary conditions
$$\begin{aligned} u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$
where \(M_\sigma \) is a real Fourier multiplier. It is proved that the equations admit a Whitney smooth family of small amplitude, real analytic almost periodic solutions with all frequencies. The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property of the perturbation and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property of the perturbation, our normal form part is independent of angle variables in spite of the unbounded perturbation. This is the first attempt to prove the almost periodic solutions for the unbounded perturbation case.
  相似文献   

9.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

10.
This study considers the quasilinear elliptic equation with a damping term,
$$\begin{aligned} \text {div}(D(u)\nabla u) + \frac{k(|{\mathbf {x}}|)}{|{\mathbf {x}}|}\,{\mathbf {x}}\cdot (D(u)\nabla u) + \omega ^2\big (|u|^{p-2}u + |u|^{q-2}u\big ) = 0, \end{aligned}$$
where \({\mathbf {x}}\) is an N-dimensional vector in \(\big \{{\mathbf {x}} \in \mathbb {R}^N: |{\mathbf {x}}| \ge \alpha \big \}\) for some \(\alpha > 0\) and \(N \in {\mathbb {N}}\setminus \{1\}\); \(D(u) = |\nabla u|^{p-2} + |\nabla u|^{q-2}\) with \(1 < q \le p\); k is a nonnegative and locally integrable function on \([\alpha ,\infty )\); and \(\omega \) is a positive constant. A necessary and sufficient condition is given for all radially symmetric solutions to converge to zero as \(|{\mathbf {x}}|\rightarrow \infty \). Our necessary and sufficient condition is expressed by an improper integral related to the damping coefficient k. The case that k is a power function is explained in detail.
  相似文献   

11.
The following is a well-known problem of statistical physics: can a dynamic system of oscillators with nonlinear coupling be described approximately by statistical laws? This problem was studied for the first time by Fermi, Ulam, and Pasta [1] for the following system of equations describing coupled oscillators:
$$\begin{gathered} x^{..} _i = x_{i + 1} - 2x_i + x_{i - 1} + \alpha [(x_{i + 1} - x_i )^2 ] - (x_i ..x_{i - 1} )^2 ], \hfill \\ (i = 1,...,N;\alpha< 1).(0.1) \hfill \\ \end{gathered} $$  相似文献   

12.
In this paper, we consider the following PDE involving two Sobolev–Hardy critical exponents,
$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.$ \label{0.1}\left\{\begin{aligned}& \Delta u + \lambda\frac{u^{2^*(s_1)-1}}{|x|^{s_1}} + \frac{u^{2^*(s_2)-1}}{|x|^{s_2}} =0 \quad \rm {in}\,\,\Omega,\quad\quad\quad(0.1)\\ & u=0 \quad {\rm on }\,\,\Omega, \end{aligned} \right.  相似文献   

13.
In this paper, the solution of a 2-D weak singular integral equation of the first kind
  相似文献   

14.
It is known that the nonlinear system of equations of plane steady isentropic potential gas flow can be linearized and transformed to a single equivalent linear differential equation of second order. For the case of a perfect gas this equation has the form [1]
$$\begin{gathered} \frac{{1 - \tau ^2 }}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial ^2 \Phi }}{{\partial \theta ^2 }} + \frac{{\partial ^2 \Phi }}{{\partial \tau ^2 }} + \frac{{\tau (1 - \tau ^2 )}}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial \Phi }}{{\partial \tau }} = 0, \hfill \\ (\tau = w/c_k , w = \sqrt {u^2 + \upsilon ^2 } , \alpha = (\gamma - 1)/(\gamma + 1); \gamma = c_p /c_\upsilon ). (0.1) \hfill \\ \end{gathered} $$  相似文献   

15.
In this paper, we consider the perturbed KdV equation with Fourier multiplier
$$\begin{aligned} u_{t} =- u_{xxx} + \big (M_{\xi }u+u^3 \big )_{x},\quad u(t,x+2\pi )=u(t,x),\quad \int _0^{2\pi }u(t,x)dx=0, \end{aligned}$$
with analytic data of size \(\varepsilon \). We prove that the equation admits a Whitney smooth family of small amplitude, real analytic quasi-periodic solutions with \(\tilde{J}\) Diophantine frequencies, where the order of \(\tilde{J}\) is \(O(\frac{1}{\varepsilon })\). The proof is based on a conserved quantity \(\int _0^{2\pi } u^2 dx\), Töplitz–Lipschitz property and an abstract infinite dimensional KAM theorem. By taking advantage of the conserved quantity \(\int _0^{2\pi } u^2 dx\) and Töplitz–Lipschitz property, our normal form part is independent of angle variables in spite of the unbounded perturbation.
  相似文献   

16.
We show that for a fractal soil the soil-water conductivity, K, is given by $$\frac{K}{{K_\varepsilon }} = (\Theta /\varepsilon )^{2D/3 + 2/(3 - D)}$$ where $K_\varepsilon$ is the saturated conductivity, θ the water content, ? its saturated value and D is the fractal dimension obtained from reinterpreting Millington and Quirk's equation for practical values of the porosity ?, as $$D = 2 + 3\frac{{\varepsilon ^{4/3} + (1 - \varepsilon )^{2/3} - 1}}{{2\varepsilon ^{4/3} \ln ,{\text{ }}\varepsilon ^{ - 1} + (1 - \varepsilon )^{2/3} \ln (1 - \varepsilon )^{ - 1} }}$$ .  相似文献   

17.
This paper is concerned with the following fractional Schrödinger equation
$$\begin{aligned} \left\{ \begin{array}{ll} (-\Delta )^{s} u+u= k(x)f(u)+h(x) \text{ in } \mathbb {R}^{N}\\ u\in H^{s}(\mathbb {R}^{N}), \, u>0 \text{ in } \mathbb {R}^{N}, \end{array} \right. \end{aligned}$$
where \(s\in (0,1),N> 2s, (-\Delta )^{s}\) is the fractional Laplacian, k is a bounded positive function, \(h\in L^{2}(\mathbb {R}^{N}), h\not \equiv 0\) is nonnegative and f is either asymptotically linear or superlinear at infinity. By using the s-harmonic extension technique and suitable variational methods, we prove the existence of at least two positive solutions for the problem under consideration, provided that \(|h|_{2}\) is sufficiently small.
  相似文献   

18.
Consider a weakly nonlinear CGL equation on the torus \(\mathbb {T}^d\):
$$\begin{aligned} u_t+i\Delta u=\epsilon [\mu (-1)^{m-1}\Delta ^{m} u+b|u|^{2p}u+ ic|u|^{2q}u]. \end{aligned}$$
(*)
Here \(u=u(t,x)\), \(x\in \mathbb {T}^d\), \(0<\epsilon <<1\), \(\mu \geqslant 0\), \(b,c\in \mathbb {R}\) and \(m,p,q\in \mathbb {N}\). Define \(I(u)=(I_{\mathbf {k}},\mathbf {k}\in \mathbb {Z}^d)\), where \(I_{\mathbf {k}}=v_{\mathbf {k}}\bar{v}_{\mathbf {k}}/2\) and \(v_{\mathbf {k}}\), \(\mathbf {k}\in \mathbb {Z}^d\), are the Fourier coefficients of the function \(u\) we give. Assume that the equation \((*)\) is well posed on time intervals of order \(\epsilon ^{-1}\) and its solutions have there a-priori bounds, independent of the small parameter. Let \(u(t,x)\) solve the equation \((*)\). If \(\epsilon \) is small enough, then for \(t\lesssim {\epsilon ^{-1}}\), the quantity \(I(u(t,x))\) can be well described by solutions of an effective equation:
$$\begin{aligned} u_t=\epsilon [\mu (-1)^{m-1}\Delta ^m u+ F(u)], \end{aligned}$$
where the term \(F(u)\) can be constructed through a kind of resonant averaging of the nonlinearity \(b|u|^{2p}+ ic|u|^{2q}u\).
  相似文献   

19.
In the context of measure spaces equipped with a doubling non-trivial Borel measure supporting a Poincaré inequality, we derive local and global sup bounds of the nonnegative weak subsolutions of
$$\begin{aligned} (u^{q})_t-\nabla \cdot {(|\nabla u|^{p-2}\nabla u)}=0, \quad \mathrm {in} \ U_\tau = U \times (\tau _1, \tau _2] , \quad p>1,\quad q>1 \end{aligned}$$
and of its associated Dirichlet problem, respectively. For particular ranges of the exponents p and q, we show that any locally nonnegative weak subsolution, taken in \(Q (\subset \bar{Q}\subset U_\tau )\), is controlled from above by the \(L^\alpha (\bar{Q}) \)-norm, for \(\alpha = \max \{p, q+1\}\). As for the global setting, under suitable assumptions on the boundary datum g and on the initial datum, we obtain sup bounds for u, in \(U \times \{ t\}\), which depend on the \(\sup g\) and on the \(L^{q+1}(U \times (\tau _1, \tau _1+t])\)-norm of \((u-\sup g)_+\), for all \(t \in (0, \tau _2-\tau _1]\). On the critical ranges of p and q, a priori local and global \(L^\infty \) estimates require extra qualitative information on u.
  相似文献   

20.
We study the Neumann boundary value problem for the second order ODE
$$\begin{aligned} u^{\prime \prime } + (a^+(t)-\mu a^-(t))g(u) = 0, \qquad t \in [0,T], \end{aligned}$$
(1)
where \(g \in {\mathcal {C}}^1({\mathbb {R}})\) is a bounded function of constant sign, \(a^+,a^-: [0,T] \rightarrow {\mathbb {R}}^+\) are the positive/negative part of a sign-changing weight \(a(t)\) and \(\mu > 0\) is a real parameter. Depending on the sign of \(g^{\prime }(u)\) at infinity, we find existence/multiplicity of solutions for \(\mu \) in a “small” interval near the value
$$\begin{aligned} \mu _c = \frac{\int _0^T a^+(t) \, dt}{\int _0^T a^-(t) \, dt}\,. \end{aligned}$$
The proof exploits a change of variables, transforming the sign-indefinite Eq. (1) into a forced perturbation of an autonomous planar system, and a shooting argument. Nonexistence results for \(\mu \rightarrow 0^+\) and \(\mu \rightarrow +\infty \) are given, as well.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号