首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
为探究施加约束对陶瓷破碎位移规律和陶瓷复合装甲抗侵彻性能的影响,采用光滑粒子流体动力学-有限元法(SPH-FEM)对柱状弹侵彻陶瓷/钢复合靶板进行了数值模拟,根据陶瓷复合装甲的破坏响应特性和弹体运动、受力变化,对侵彻过程进行了阶段划分,并在此基础上分析了自约束、侧向约束、面板约束3种约束方式对陶瓷破碎位移的影响,并对靶板防护性能进行了改进。结果表明:通过施加约束限制陶瓷锥的位移是充分发挥陶瓷复合装甲防护能力的关键,施加3种约束方式均能够减小破碎陶瓷的横向位移或纵向位移,从而在一定范围内有效提升陶瓷复合靶板的抗侵彻能力。  相似文献   

2.
基于合理简化假设建立快捷实用的工程分析模型是研究复合靶板抗弹体冲击能力的重要方法。已有弹体冲击陶瓷/金属复合靶板理论模型的形式及计算过程复杂,并且缺少弹体超高速(弹体初速大于1 500m/s)贯穿复合靶板的实验验证。综合考虑弹体侵彻破碎陶瓷锥体过程中破碎陶瓷强度的下降、弹体初速对破碎陶瓷锥半锥角取值的影响,以及金属背板挠曲变形对弹体侵彻破碎陶瓷锥的影响,基于半流体动力学Alekseevskii-Tate(A-T)模型建立了预测弹体超高速贯穿陶瓷/金属复合靶板残余速度的简化分析模型。通过与实验数据以及基于LS-DYNA有限元分析软件开展的钨合金长杆弹(初速1 800~2 600m/s)贯穿Al_2O_3陶瓷/RHA钢复合靶板数值模拟结果对比,验证了简化分析模型、数值模型及其相应参数的正确性和适用性。进一步基于简化模型,在总厚度或总面密度一定的条件下,讨论了4种陶瓷面板(Al_2O_3、AlN、SiC、B4C)和两种金属背板(RHA钢、铝)复合靶板的弹道性能。  相似文献   

3.
以钢/铝双硬度爆炸焊接复合靶为研究对象,采用系列弹道实验和数值模拟方法,研究了其在球形弹丸垂直侵彻作用下的抗侵彻性能。侵彻实验利用直径为14.5mm的滑膛枪发射直径为6mm的钢质球形弹丸;采用LS-DYNA3D非线性有限元程序和有限元-光滑粒子流体动力学(FE-SPH)耦合法,进行数值模拟。基于实验和数值模拟结果,分析了不同靶板的毁伤机理和破坏模式,以及靶板厚度、强度等因素对复合靶抗侵彻性能的影响。结果表明:在球形弹丸的垂直侵彻作用下,钢面板发生剪切冲塞破坏,铝背板发生延性扩孔破坏;对于双层靶而言,钢面板与铝背板的厚度比约为2/3时,复合靶的抗侵彻性能最差;数值计算结果与实验结果吻合良好,表明FE-SPH耦合算法可较好地预测双层复合靶板的抗侵彻性能。  相似文献   

4.
陶瓷是具有轻质高强特性的常用抗弹材料,但其本身的脆性特点使得陶瓷利用率较低,局部的击穿往往导致整块陶瓷破碎。为了提高陶瓷的利用率,提出了一种分层梯度陶瓷球金属复合结构,并通过数值模拟研究了陶瓷球尺寸及着弹点的影响。从子弹和靶板的变形、弹速变化和塑性波传播等角度分析了陶瓷球金属复合结构的抗弹机理,并对结构进行了梯度优化设计。研究结果表明,直径为7.2 mm的陶瓷球结构的综合抗弹性能良好,在此基础上设计的梯度陶瓷球结构能进一步提升抗弹性。陶瓷球金属复合靶板呈局部破坏,靶板其他位置仍具有抗打击能力。  相似文献   

5.
为研究聚脲涂层复合靶板的抗侵彻性能,利用球形弹丸开展了相近面密度下的钢质靶板与喷涂聚脲涂层复合结构的弹道冲击实验,得到了钢靶与采用不同涂覆方式制备的聚脲涂层复合结构的抗侵彻性能,分析了失效模式和吸能机理。结果表明:冲击过程中,前聚脲涂层能有效缓冲弹体与钢靶之间的撞击载荷,使钢靶产生预变形,降低弹体的相对侵彻速度,延缓钢靶绝热剪切破坏的发生,提高复合结构的弹道极限;后聚脲涂层可与钢靶协调变形,形成冲塞质量块吸能,吸收弹体动能,在弹速较高时有较好的吸能能力。  相似文献   

6.
运用LS-DYNA动力学分析软件,对具有不同橡胶夹层厚度的陶瓷/橡胶/钢复合靶在30°和60°倾角下的射流侵彻情况进行了数值模拟。采用聚能装药基准弹,进行了剩余穿深实验,研究了射流侵彻陶瓷/橡胶/钢复合靶后射流速度、靶板变形和剩余穿深,分析了倾角和橡胶夹层厚度对复合靶抗射流侵彻性能的影响机理。结果表明:射流侵彻陶瓷/橡胶/钢复合靶的性能受倾角的影响很大,尤其是在大倾角下影响更为显著;橡胶夹层对射流侵彻性能有一定的影响,但其厚度的变化对射流侵彻性能的影响很小。  相似文献   

7.
为研究防弹衣抗小钨球侵彻的性能,结合试验,利用有限元分析软件LS-DYNA建立了小钨球侵彻防弹衣的数值模型。在此基础上,对侵彻过程进行了数值模拟,分析了防弹衣的破坏机理,并探讨了凯夫拉(Kevlar)与超高分子量聚乙烯(Ultra-highmolecularweight polyethylene, UHMWPE)混杂配比对防弹衣抗侵彻性能的影响。研究结果表明:在小钨球侵彻作用下,防弹衣迎弹面主要发生纤维剪切破坏,背弹面主要发生纤维拉伸断裂破坏,并伴随着一定的层间分层破坏。随着着靶速度的提高,纤维的拉伸及分层破坏程度降低;与单一Kevlar制作的防弹衣相比,采用面板Kevlar、背板UHMWPE混杂结构的防弹衣抗侵彻性能更好。当Kevlar/UHMWPE的体积配比分别为1∶1、1∶2和1∶4时,防弹衣的抗侵彻性能分别提高3.7%、5.3%和4.4%,质量分别减少14.1%、18.8%和22.5%。综合考虑防弹衣的抗侵彻性能和重量,采用Kevlar/UHMWPE混杂配比为1∶2的防弹衣结构最佳;在弹道极限附近,采用Kevlar/UHMWPE混杂结构的防弹衣的吸能效果优于单一Kevlar结构,且随着着靶速度的提高,两者的吸能差异逐渐减小。研究结果对防护装备的优化设计具有一定的参考价值。  相似文献   

8.
为了研究陶瓷复合靶的抗侵彻性能,在陶瓷的空腔膨胀理论中,提出了一个表征陶瓷损伤的损伤因子。基于考虑损伤的陶瓷空腔膨胀理论和金属空腔膨胀理论,并忽略靶板侧向边界的影响,根据陶瓷材料和金属材料的特点,按照弹-靶交界面处材料的不同应力状态,分4种情况进行了讨论。分别求得了4种分区下的陶瓷靶板的抗侵彻阻力,分析了影响陶瓷靶板抗侵彻阻力的材料性质。结果表明:(1)在陶瓷靶板的材料参数中,陶瓷失效后的压剪系数对靶板阻力的影响较大,而抗拉强度和抗压强度对靶板阻力的影响较小;(2)当陶瓷靶板近似为一个无限大的靶板时,其裂纹区的相对尺寸及空腔膨胀压力是一个常数。  相似文献   

9.
为研究破片模拟弹侵彻钢板的过程,将模拟弹冲击钢装甲的侵彻过程分为初始接触、弹体侵入、剪切冲塞和穿甲破坏4个阶段进行理论分析。当靶板剩余厚度的剪切冲塞抗力小于延性扩孔抗力时,靶板的破坏模式完全转变为剪切冲塞;剪切塞块速度与剩余弹体速度相同时,推导出破片模拟弹侵彻钢靶板的能量转化及剩余速度公式,与实验及有限元分析结果吻合较好。研究结果对于破片侵彻钢靶板威力设计具有一定实用价值。  相似文献   

10.
聚能射流对氧化铝陶瓷靶的侵彻特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 建立了考虑损伤的求解靶板阻力的理论模型,以此来评估陶瓷靶板的抗侵彻能力;数值模拟了长杆弹侵彻氧化铝陶瓷靶的破坏特性,结合实验结果确定了氧化铝陶瓷本构模型中的材料参数。建立了聚能射流侵彻氧化铝陶瓷靶的计算模型,对射流的形成机理及氧化铝陶瓷靶的抗侵彻性能进行研究,讨论了药型罩的几何尺寸对所形成的射流速度及侵彻深度的影响。结果表明:药型罩的锥角和壁厚增大,射流速度减小,壁厚对射流速度梯度的影响较大;同样,药型罩的锥角对侵彻深度也有较大的影响。  相似文献   

11.
研究了玻璃纤维复合三明治板在圆柱形平头弹体打击下的预测弹道极限的理论预测方法。建立了玻璃纤维复合三明治板的三阶段侵彻模型,包括侵彻面板阶段、侵彻复合材料夹芯层阶段和侵彻内板阶段。基于高速弹体侵彻下靶板的局部变形假设建立了理论关系,将弹体侵彻复合材料夹心层时视为刚体处理,面板和背板的侵彻阶段考虑了弹体的墩粗效应和靶板的绝热剪切效应。基于能量平衡原理,推导了复合材料三明治板的弹道极限,并将理论计算结果与实验结果进行对比和分析,研究了不同侵彻速度、弹体质量和夹心层厚度对弹道极限的影响。结果表明,理论计算结果与实验结果具有较好的一致性。  相似文献   

12.
为研究局部改性弹体结构的破坏和质量损失规律,设计了不同改性特征的侵彻弹体,在380~500m/s速度范围内进行了侵彻装甲靶板的实验研究,并对弹体的破坏形式、质量损失等问题进行了探讨。结果表明:随着初始速度的增加,实验弹体的弹长侵蚀率及相对质量损失率相应增加,而弹径磨损率变化较小;穿靶后实验弹体以头部剪切断裂为主要破坏形式,但主体部分仍然保持稳定。改性工艺(1)和工艺(5)既与弹体强度有较好的匹配性,又可保持良好的破碎性能。  相似文献   

13.
在SPH/FEM耦合算法程序中引入了陶瓷和金属材料的本构模型,对钨合金长杆弹侵彻陶瓷复合靶开展了数值模拟。给出了侵彻过程的物理图像,并分析了陶瓷靶的抗侵彻机理。对不同入射速度下的计算结果和实验结果进行了对比,计算得到的侵彻深度和实验值比较一致,验证了耦合算法的有效性。  相似文献   

14.
 通过分析应力波在橡胶复合靶板中的传播特性,研究了复合靶板上各层质点速度在应力波作用下的变化情况,分析了应力波在橡胶复合靶板对射流干扰中的作用,结合射流在空气中的断裂模型,提出了射流在复合靶影响下的断裂模型;分析了橡胶夹层厚度对复合靶板抗射流侵彻性能的影响;通过脉冲X光照相技术和穿深实验,研究了橡胶夹层厚度不同时,在射流以68°倾角侵彻下,橡胶复合靶板对56 mm口径基准成型装药射流的干扰情况及射流的剩余侵彻能力。研究结果表明:理论分析与实验结果相吻合;橡胶复合靶板对射流有很好的干扰作用;在满足结构效应的情况下,随着天然橡胶夹层厚度的增加,应力波对射流的干扰能力降低,射流的变形程度减小,复合靶板的防护能力降低。  相似文献   

15.
结合金属/复合材料层合结构的抗侵彻能力,基于混合蜂窝结构低成本、高韧性以及在低速冲击下吸能的特点,设计了一种Al/CFRP(carbon fiber reinforced plastics)/混合蜂窝铝复合夹芯多层结构,旨在利用各层结构特点,逐步降低弹体速度,高效吸收弹体动能,以达到防护效果。为探究Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的损伤演化规律及吸能特性,开展了Al/CFRP/混合蜂窝铝复合夹芯多层结构在弹体侵彻下的数值分析,探讨了冲击能量对多层结构抗侵彻性能的影响。结果表明:与Al/CFRP复合结构相比,引入混合蜂窝铝后,结构给予弹体的反作用力增大,在能量不变的情况下,弹体作用板的时间变短。在Al/CFRP/混合蜂窝铝复合夹芯多层结构抗侵彻过程中,Al板和CFRP芯层主要抵抗侵彻以降低弹体速度,混合蜂窝铝主要是吸能。在40 J的冲击能量下,结构总吸能为36.79 J,比吸能为0.217 J/g,蜂窝铝芯层吸能占主要部分,吸能比率为30.3%;随着冲击能量的增大,蜂窝铝芯层的吸能比率增至56.2%,即冲击能量较大时蜂窝铝芯层的吸能效果更好。  相似文献   

16.
为了研究Q235钢多层板的抗侵彻性能,进行了直径为9.45 mm的钨合金球形破片侵彻7.2 mm和(3.6+3.6)mm厚Q235钢双层板试验,获得了相应的弹道极限。在此基础上,建立数值仿真模型,研究了钨合金球侵彻接触式等厚3层、4层、5层、6层板的弹道极限。通过量纲分析方法,分析了分层数对靶板弹道极限的影响。结果表明:对于球形破片,总厚度为7.2 mm的等厚双层板的抗侵彻性能高于单层板;当分层数大于2时,接触式多层等厚靶板的弹道极限随着层数的增加而减小,即分层数越多,靶板的抗侵彻性能越低,通过量纲分析方法得到了靶板分层数与破片弹道极限的关系。研究结果可为未来装甲防护设计提供一定的参考。  相似文献   

17.
为了研究影响叠合双层靶抗弹性能的因素,在靶板总厚度为7.2 mm的条件下,采用直径为9.5 mm、质量为8.05 g的钨合金球形破片侵彻单层和不同组合方式的叠合双层Q235钢靶板。弹道极限试验结果表明:(3.6+3.6) mm靶板最高,(5.4+1.8) mm靶板次之,(1.8+5.4) mm靶板最低,单层7.2 mm靶板与(5.4+1.8) mm叠合靶基本相同。研究发现,叠合靶排列方式不同,则其破坏模式与耗能模式不同。当双层靶板均产生冲塞破坏时,压缩耗能和凹陷耗能是影响靶板抗弹性能的主要因素;当前靶板为冲塞破坏、后靶板为扩孔破坏时,凹陷耗能是影响靶板抗弹性能的主要因素。通过对多种组合靶的能耗计算表明,(3.6+3.6) mm的排列是本研究条件下的最优组合。这些研究结果对防护装置的设计有重要的参考价值。  相似文献   

18.
为了实现侵彻体对多层靶板的高效毁伤,采用数值模拟方法研究了分段式横向效应增强体(PELE)对4层金属靶的侵彻效应,获得了弹体侵彻速度和靶板厚度对弹体终点效应的影响。结果表明,分段PELE弹侵彻4层靶的靶后效果优于普通PELE弹。与金属杆相比,分段PELE弹侵彻多层靶后的弹孔直径更大。弹丸贯穿各层靶板后壳体的径向速度峰值随着靶板厚度的增加而增大,而壳体破碎长度并不随之线性变化。提高弹丸侵彻速度时,弹丸穿过第1层靶板后壳体破碎长度的变化趋势与径向速度峰值的变化相似,穿过第2层和第3层靶板后壳体破碎长度和径向速度峰值在侵彻速度为1.4km/s时达到极大值,随后下降,而穿过第4层靶板后壳体破碎长度和径向速度峰值随着初速度的增加而增大。  相似文献   

19.
为了研究高速弹体对钢筋混凝土靶的侵彻/贯穿效应,以100 mm口径滑膛炮作为发射平台,驱动10 kg级卵形弹体以820~1195 m/s速度撞击强度为31.0~43.6 MPa的钢筋混凝土靶,获得了弹体侵彻/贯穿钢筋混凝土靶的终点弹道实验数据,并对弹体的侵彻/贯穿深度、靶板侧面自由面效应、弹体的变形进行了详细分析。结果表明:弹体的侵彻/贯穿深度为2.2~2.8 m,部分经验公式预估的侵彻/贯穿深度与实验结果吻合较好;当靶面相对尺寸较小且弹速较高时,靶板侧面自由面效应比较明显;当弹速达到1195 m/s时,弹体开始由刚体向半流体转变。  相似文献   

20.
杆式动能弹侵彻陶瓷复合靶的数值模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 根据已有的实验数据和文献参数,确定了YB-AD90陶瓷材料的JH-2模型参数。采用Autodyn-2D程序,对杆式动能弹侵彻YB-AD90陶瓷复合靶的侵彻深度和动力学侵彻过程进行了数值模拟。研究结果表明,采用的数值模拟方法和陶瓷材料JH-2模型参数合适,模拟结果与实验结果基本吻合,并且能够模拟动态侵彻过程中弹丸头部的形状变化、材料破碎和通道塌陷等重要特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号