首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new liquid‐crystal composite, composed of photopolymerizable self‐assembled fibers and a smectic liquid crystal, and its photopolymerized composite have been prepared. The fibers oriented along the smectic layers are obtained by self‐assembly of an amino acid derivative with terminal methacryloyl groups in the smectic liquid crystal. The oriented fibrous structures are fixed by photopolymerization, resulting in the formation of microgrooves on the substrate surfaces. The aligned direction of the liquid‐crystalline molecules is changed to the direction along the fibers after thermal annealing. The patterning of liquid‐crystal alignment is achieved for these liquid‐crystal composites by patterned photopolymerization.  相似文献   

2.
We have prepared photoresponsive oligomers that have molecular weights of ca. 4500, 8000, and 16 000 g mol–1 via the free‐radical polymerization of 4‐[4‐alkylphenylazo]phenoxyalkyl acrylates. All of the oligomers possess bilayer smectic A (SmA) and smectic B (SmB) phases. Increasing the concentration of these oligomeric dopants in a glass‐forming cholesteric liquid crystal causes a dramatic red‐shift in the reflection wavelength. The pitch shifts are very dependent on the alkyl chain lengths and molecular weights of the dopants. The oligomer that contains octyl chains and an octyl spacer, and that has a molecular weight of 4500 g mol–1 exhibits the largest shift in the reflection wavelength. UV exposure has been used to control the cholesteric reflection pitch of the oligomer‐cholesteric glassy liquid‐crystal mixture over the entire visible region of the electromagnetic spectrum and vitrifies the samples by rapid cooling from their cholesteric temperatures to 0 °C. Extremely stable, even at 70 °C, erasable, full‐color images have been created using this host–guest mixture.  相似文献   

3.
Fast and high‐contrast responses with low driving voltages in twisted nematic (TN) cells are achieved for anisotropically oriented structures of liquid‐crystalline physical gels. They are prepared by hydrogen‐bonded aggregation of an L ‐lysine‐based gelator in nematic liquid crystals. When the mixtures of the nematic liquid crystals and the gelator are prepared in TN cells, fibrous aggregates of the gelator align along the twisted‐nematic orientation of the liquid crystal, forming oriented phase‐separated structures.  相似文献   

4.
Tetraphenylpyrene has been selected as a discotic core to promote liquid‐crystalline fluorescent columns in view of its high fluorescence quantum yield in solution and ease of substitution by flexible lateral side chains. The synthesis and characterization of ten new derivatives of pyrene have been carried out; the pyrene core has been substituted at the 1,3,6,8‐positions by phenylene rings bearing alkoxy, ester, thioether, or tris(alkoxy)benzoate groups on the para position; the compounds have been characterized by mass spectrometry and 1H NMR and UV‐vis spectroscopies. In order to generate liquid‐crystalline phases, the nature, number, and size of the side chains as well as the degree of polarity around the tetraphenylpyrene core have been varied. However, the desired liquid‐crystalline behavior has not been observed. The supramolecular order together with the absorption and emission properties in solution and the solid state are discussed and compared to theoretical predictions. Quantum‐chemical calculations rationalize the high solid‐state fluorescence of a tetraphenylpyrene derivative for which the crystal structure has been determined.  相似文献   

5.
This paper describes the synthesis of photoisomerizable derivatives of isosorbide. These derivatives contain a stilbene or cinnamate moiety and can therefore be used as photoisomerizable chiral compounds in cholesteric liquid‐crystalline mixtures. The reflection wavelength of cholesteric layers made from these mixtures is increased by UV irradiation due to the fact that the Z‐isomers of these derivatives exhibit a lower helical twisting power than the corresponding E‐isomers. The cinnamate derivatives are very suitable for use in cholesteric color filters that find application in liquid‐crystal displays.  相似文献   

6.
Polymer‐dispersed liquid crystals (PDLCs) are liquid‐crystal dispersions within a polymer matrix. These films can be changed from an opaque to a transparent state by applying a suitable alternating‐current electric field. PDLCs have attracted the interest of researchers for their applications as light shutters, smart windows, and active displays. For such applications, electrochromic devices, which change color as a result of electrochemical reactions, have also become a recent focus of research. Herein, we report our preliminary results on bifunctional devices based on PDLCs that host electrochromic guest molecules. Such devices allow both an independent and fast switching from a scattering opaque state to a transmissive transparent state owing to liquid‐crystal reorientation and a color change from white (pale yellow) to dark blue, due to either oxidation or reduction of the electrochromic molecules.  相似文献   

7.
A liquid crystal (LC) photonic device with an anisotropic optical heterojunction structure has been fabricated. The device has a phase‐retarding nematic LC (NLC) layer sandwiched between two polymer cholesteric LC films with right‐handed helices of different pitches. Electrotunable non‐reciprocal light transmittance and unidirectional circularly polarized (CP) lasing emission have been successfully demonstrated for this device structure. Two left CP (LCP) lasing emission peaks are observed at the edges of the overlapping region between the two photonic bands in the structure and are shifted upon the application of a voltage. In contrast, a non‐reciprocal right CP (RCP) lasing emission peak emerges at one of the band edges and diminishes upon the application of a voltage. These phenomena are interpreted based on the selective reflection of RCP light and the reorientation of the NLC molecules by the application of a voltage.  相似文献   

8.
Polymer/liquid‐crystal (LC) tubes consisting of an approximately 30 nm thick poly(methyl methacrylate) (PMMA) layer on the outside and a 5 to 10 nm thick discotic liquid‐crystalline layer on the inside of the tube walls have been prepared by wetting ordered porous alumina templates with a pore diameter of 400 nm. Decreasing the pore diameter to 60 nm results in a confinement‐induced transition from a wetting state to a non‐wetting state, and solid rods with a sequential morphology are obtained. The texture of the mesophase depends on the morphology type and the thermal history. Under certain conditions the LC mesophase exhibits a dominant, well‐ordered planar texture where the discotic columns are aligned with the long axes of the tubes. The controlled generation of one‐dimensional nano‐objects possessing mesoscopic fine structures and intrinsic anisotropy should be the first step towards a rational design of miniaturized building blocks.  相似文献   

9.
Polymer cholesteric liquid‐crystal (PCLC) flakes were investigated for their electro‐optical behavior under an applied alternating‐current field. Shaped flakes, fabricated using soft lithography and suspended in dielectric‐fluid‐filled cells, reoriented more uniformly than randomly shaped flakes made by fracturing of PCLC films. Extensive characterization found shaped flakes to be smooth and uniform in size, shape, and thickness. Reorientation in applied fields as low as tens of mVrms μm–1 was fastest for flakes with lateral aspect ratios greater than 1:1, confirming theoretical predictions based on Maxwell–Wagner polarization. Brilliant reflective colors and inherent polarization make shaped PCLC flakes of interest for particle displays.  相似文献   

10.
11.
The thermotropic and lyotropic liquid‐crystalline (LC) phases of the ionic self‐assembled complex N,N′,‐bis(2‐(trimethylammonium)ethylene)‐perylene‐3,4,9,10‐tetracarboxyldiimide‐bis(2‐ethylhexyl)sulfosuccinate have been studied using polarizing microscopy, differential scanning calorimetry (DSC), and X‐ray scattering techniques. A two‐dimensional (2D) columnar thermotropic LC phase with π–π stacking of the perylene tectonic units and a lyotropic LC phase in dimethyl sulfoxide (DMSO) have been found. Different techniques have been applied to align both systems and included: surface interactions, electric and magnetic fields, shear force, and controlled domain formation at the LC–isotropic phase‐transition front (PTF). Characterization of the alignment in films has been performed using polarized UV‐vis spectroscopy and transmission null‐ellipsometry. The best results have been obtained for alignment of the material in a lyotropic phase by controlled domain formation at the PTF of the LC–isotropic phase transition. In this case, a dichroic ratio of 18 is achieved with packing of columns of perylenediimide tectons perpendicular to the PTF.  相似文献   

12.
A 5,7‐dioctadecylquinoxalinophenazine zwitterion 1 has been investigated to determine its thermal phase behavior. A combination of differential scanning calorimetry (DSC), variable temperature low‐ and high‐angle X‐ray diffraction (XRD), and deuterium solid‐state NMR spectroscopy were used to characterize the different phases of the tetraazapentacene 1 . This molecule is found to exist in a variety of crystalline solid phases between room temperature and 167 °C, with different room‐temperature phases resulting from crystallization from solution compared with cooling from the melt. Interestingly, the molecule exhibits liquid‐crystalline behavior at high temperatures, between 167 °C and 186 °C, above which it becomes an isotropic fluid. The presence of liquid‐crystalline behavior in a zwitterionic system opens up the potential for the use of these or related molecules in optoelectronic switching.  相似文献   

13.
New thermoplastic liquid‐crystalline elastomers have been synthesized using the telechelic principle of microphase separation in triblock copolymers. The large central block is made of a main‐chain nematic polymer renowned for its large spontaneous elongation along the nematic director. The effective crosslinking is established by small terminal blocks formed of terphenyl moieties, which phase separate into semicrystalline micelles acting as multifunctional junction points of the network. The resulting transient network retains the director alignment and shows a significant shape‐memory effect, characteristic and exceeding that of covalently bonded nematic elastomers. Its plasticity at temperatures above the nematic–isotropic transition allows drawing thin well‐aligned fibers from the melt. The fibers have been characterized and their thermal actuator behavior—reversible contraction of heating and elongation on cooling—has been investigated.  相似文献   

14.
A method for grayscale photopatterning of an amorphous polymer film derived from a bisanthracene‐functionalized liquid‐crystalline monomer is developed. Solution photopolymerization of a monomer with two anthracene moieties, one at each end, affords an amorphous polymer. A combination of irradiation with patterned UV light and heating results in photopatterning on thin films prepared from the polymer. On non‐irradiated areas of the film, the polymer reverts to the monomer owing to the thermal back‐reaction of the anthracene photodimer, forming an ordered phase. On irradiated areas remaining in the amorphous phase, the thermal back‐reaction is suppressed. This phenomenon results in a clear contrast and visual images on the film under polarized light. Grayscale photopatterning is also made possible for the solution‐polymerized polymer by controlling the intensity of exposure. In addition, rewritable photopatterning can be achieved by melt photopolymerization of the monomer. The new photopatterning is essentially nondestructive because it needs neither image development nor anthracene‐excitation light for reading.  相似文献   

15.
16.
We report a new strategy, the directional peeling of a rigiflex mold with a nanostructure, to overcome several problems with general patterning techniques for liquid‐crystal (LC) alignment. These include difficulty in generating the pretilt angle and in controlling the LC rising‐up direction, formation of local domains, and weak optical properties. The directional peeling of the rigiflex mold results in pretilt‐angle formation and controls the LC rising‐up direction. In addition, a nanostructure with small spacing aligns the LC with a high order parameter because of a strong confinement effect and suppresses diffraction due to its small spacing. Eventually, the nanostructure achieves improvements in the optical properties. In summary, while recent patterning techniques for LC alignment only solve one problem, the directional peeling of the rigiflex mold with a nanostructure simultaneously overcomes several problems with LC alignment and optical properties.  相似文献   

17.
3D photonic nanostructures with desirable functionalities in the visible light region and beyond have been recently given vast and increasing attentions because of the ability to control or confine electromagnetic waves in all three dimensions. Although substantial progress has been made in fabricating 3D nanostructures by means of lithography and nanotechnology, various bottlenecks still need to be overcome, and developing soft 3D stimuli‐directed nanostructures with tailored properties remains a challenging but exciting work. In this context, soft nanotechnology—i.e., exploiting self‐organized soft materials in nanotechnology—is emerging as a vibrant and burgeoning field of research in the bottom‐up nanofabrication of intelligent stimuli‐driven 3D photonic materials and devices. Liquid‐crystalline materials undoubtedly represent such a marvelous dynamic system that combines the liquid‐like fluidity and crystal‐like ordering from molecular to macroscopic material levels. Importantly, being “soft” makes the materials responsive to various stimuli such as temperature, light, mechanical force, and electric and magnetic fields as well as chemical and electrochemical reactions, resulting in a fascinating tunability of dynamic photonic bandgaps in the 3D nanostructure that provides numerous opportunities in all‐optical integrated circuits and next‐generation communication systems. Here, the development of 3D photonic nanostructures is reviewed, culminating with perspectives for the future scope and challenges of these emerging soft 3D photonic nanostructures towards device applications.  相似文献   

18.
Films of liquid‐crystal networks with a splayed molecular alignment over their cross‐section display a well‐controlled deformation as a function of temperature. The deformation can be explained in terms of differences in thermal expansion depending on the average molecular orientation of the mesogenic centers of the monomeric units. The thermal expansion of the anisotropic polymers has been characterized as a function of their molecular structure and the polymerization conditions. As a reference, films with an in‐plane 90° twist have also been studied and compared with the splayed, out‐of‐plane molecular rotation. The twisted films show a complex macroscopic deformation owing to the formation of saddle‐like geometries, whereas the deformation of the splayed structured is smooth and well controlled. The deformation behavior is anticipated to be of relevance for polymer‐based microelectromechanical system (MEMS) technology.  相似文献   

19.
In this report, we show that the microstructures of hydrogen‐bonded side‐chain liquid‐crystalline block copolymers can be rapidly aligned in an alternating current (AC) electric field at temperatures below the order–disorder transition but above the glass transition. The structures and their orientation were measured in real time with synchrotron X‐ray scattering. Incorporation of mesogenic groups with marked dipolar properties is a key element in this process. A mechanism related to the dissociation of hydrogen bonds is proposed to account for the fast orientation switching of the hydrogen‐bonded blends.  相似文献   

20.
In this report, a novel type of photoresponsive liquid crystalline polymer with a block mesogenic side‐group is demonstrated. The block mesogene is an amphipathic molecule containing a hydrophobic mesogene (azotolane moiety) and hydrophilic oligooxyethylene moieties in the same unit. The block mesogene in the polymer plays a role in liquid crystalline, amphiphilic and photoresponsive properties. As expected, a film prepared from the polymer exhibits phase separation of a lamellar structure due to cooperative motion between liquid crystal assembly and nanophase separation. The morphology of the lamellae can be aligned upon irradiation of linearly polarized light. Moreover, a photochemical phase transition induced by unpolarized UV irradiation erases the surface morphology. The erased nanostructure can be recovered by annealing or irradiation of linearly polarized light, meaning that the surface morphology is rewritable via a photochemical process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号