首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lanthanide isopropoxides supported by carbon‐bridged bisphenolate ligands of 2,2′‐ethylene‐bis(4,6‐di‐tert‐butylphenoxo) {[(EDBP)Ln(μ‐OPri)(THF)2]2, where Ln is Nd ( 1 ), Sm ( 2 ), or Yb ( 3 ) and THF is tetrahydrofuran} were synthesized by protic exchange reactions in high yields with Cp3Ln compounds as raw materials, and complex 1 was structurally characterized. Complexes 1 – 3 were shown to be efficient initiators for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and 2,2‐dimethyltrimethylene carbonate (DTC). Complexes 1 – 3 could initiate the controlled polymerization of ε‐CL, and the polymerization rate was first‐order with respect to the monomer. The influence of the reaction conditions on the monomer conversion, molecular weight, and molecular weight distribution of the resultant polymers was investigated. End‐group analyses of the oligomers of ε‐CL and DTC showed that the polymerization underwent a coordination–insertion mechanism. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4409–4419, 2006  相似文献   

2.
This study investigated the synthesis of the biocatalyst, magnesium 2,6‐di‐tert‐butyl‐4‐methylphenoxide (Mg(BHT)2) complex, and the ring‐opening polymerization (ROP) of ε‐caprolactone (CL). The complex demonstrates high catalytic activity and controllable of molecular weight for the ROP of CL in tetrahydrofuran at room temperature, even when polymerization was performed under air. Before this study, the polymerization of CL had never been performed using a magnesium catalyst under air at room temperature. Various forms of alcohols with different purposes were also used as initiators with Mg(BHT)2. The results show that the magnesium complex acts as a perfect catalyst because of its high catalytic activity and control ability without any cytotoxicity in the polymerization of CL, making it suitable for biomedical applications. In addition, nanoparticle formation, cytotoxicity, and phototoxicity of tri‐2‐hydroxyethyl ester [Ce6‐(CH2CH2OPCL)3] were also studied in this article and Ce6‐(CH2CH2OPCL)3 formed nanoparticle can act as a nanophotosensitizer for photodynamic therapy. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

3.
Although the ring‐opening polymerization (ROP) of ε‐caprolactone (CL) in toluene at 100 °C can be initiated by yttrium trisphenolate (Y(OC6H5)3), in the presence of 1,2‐propanediol (PD) the ROP gives much better, that is, controlled polymerizations. In this case, the molecular weights (MWs) are controlled by the CL/PD molar ratios with primary and secondary hydroxyl groups both initiating the ROP and the MW distributions are narrow. The chain transfers between the active yttrium alkoxides and the residual hydroxyl groups on the PD and/or the chain ends appear to be much faster than chain propagation, consistent with the living character of the ROP. Computational studies support these facile reactions with estimated activation free energies in the 3.0–4.5 kcal/mol range compared with about 25–30 kcal/mol for the polymerization. Intramolecular transfer within the PD is predicted to be negligible having a calculated activation energy of 19 kcal /mol. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
The synthesis, characterization and ε‐caprolactone polymerization behavior of lanthanide amido complexes stabilized by ferrocene‐containing N‐aryloxo functionalized β‐ketoiminate ligand FcCOCH2C(Me)N(2‐HO‐5‐But‐C6H3) (LH2, Fc = ferrocenyl) are described. The lanthanide amido complexes [LLnN(SiMe3)2(THF)]2 [Ln = Nd ( 1 ), Sm ( 2 ), Yb ( 3 ), Y ( 4 )] were synthesized in good yields by the amine elimination reactions of LH2 with Ln[N(SiMe3)2]3(µ‐Cl)Li(THF)3 in a 1:1 molar ratio in THF. These complexes were characterized by IR spectroscopy and elemental analysis, and 1H NMR spectroscopy was added for the analysis of complex 4 . The definitive molecular structures of complexes 1 and 3 were determined by X‐ray diffraction studies. Complexes 1 – 4 can initiate the ring‐opening polymerization of ε‐caprolactone with moderate activity. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Phosphido‐diphosphine Group 3 metal complexes 1–4 [(o‐C6H4PR2)2P‐M(CH2SiMe3)2; R = Ph, 1 : M = Y, 2 : M = Sc; R = iPr, 3 : M = Y, 4 : M = Sc] are very efficient catalysts for the ring‐opening polymerization (ROP) of cyclic esters such as ε‐caprolactone (ε‐CL), L ‐lactide, and δ‐valerolactone under mild polymerization conditions. In the ROP of ε‐CL, complexes 1–4 promote quantitative conversion of high amount of monomer (up to 3000 equiv) with very high turnover frequencies (TOF) (~4 × 104 molCL/molI h) showing a catalytic activity among the highest reported in the literature. The immortal and living ROP of ε‐CL and L ‐lactide is feasible by combining complexes 1–4 with 5 equiv of 2‐propanol. Polymers with controlled molecular parameters (Mn, end groups) and low polydispersities (Mw/Mn = 1.05–1.09) are formed as a result of fast alkoxide/alcohol exchange. In the ROP of δ‐valerolactone, complexes 1–4 showed the same activity observed for lactide (L ‐ and D ,L ‐lactide) producing high molecular weight polymers with narrow distribution of molar masses. Complexes 1–4 also promote the ROP of rac‐β butyrolactone affording atactic low molecular weight poly(hydroxybutyrate) bearing unsaturated end groups probably generated by elimination reactions. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

6.
The anionic lanthanide‐sodium‐2,6‐di‐tert‐butyl‐phenoxide complexes [Ln(OAr)4][Na(DME)3]·DME (Ln = Nd 1 (neodymium), Sm 2 (samarium), or Gd 3 (gadolium); DME = dimethoxyethane) were synthesized by the reaction of anhydrous LnCl3 with 4 equiv of sodium‐2,6‐di‐tert‐butyl‐phenoxide NaOAr in high yields and structurally characterized. These complexes showed high catalytic activity in the ring‐opening polymerizations of ?‐caprolactone (?‐CL) and trimethylene carbonate (TMC). The catalytic activity profoundly depended on the lanthanide metals. The active order of Gd < Sm < Nd for the polymerization of ?‐CL and TMC was observed. The polymers obtained with these initiators all showed a unimodal molecular weight distribution, indicating that the [Ln(OAr)4][Na(DME)3]·DME anionic complexes could be used as single‐component initiators. The anionic complex was more efficient than the corresponding neutral complex, Ln(OAr)3(THF)2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1210–1218, 2007  相似文献   

7.
The treatment of the recently reported potassium salt (S)‐N,N′‐bis‐(1‐phenylethyl)benzamidinate ((S)‐KPEBA) and its racemic isomer (rac‐KPEBA) with anhydrous lanthanide trichlorides (Ln=Sm, Er, Yb, Lu) afforded mostly chiral complexes. The tris(amidinate) complex [{(S)‐PEBA}3Sm], bis(amidinate) complexes [{Ln(PEBA)2(μ‐Cl)}2] (Ln=Sm, Er, Yb, Lu), and mono(amidinate) compounds [Ln(PEBA)(Cl)2(thf)n] (Ln=Sm, Yb, Lu) were isolated and structurally characterized. As a result of steric effects, the homoleptic 3:1 complexes of the smaller lanthanide atoms Yb and Lu were not accessible. Furthermore, chiral bis(amidinate)–amido complexes [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were synthesized by an amine‐elimination reaction and salt metathesis. All of these chiral bis‐ and tris(amidinate) complexes had additional axial chirality and they all crystallized as diastereomerically pure compounds. By using rac‐PEBA as a ligand, an achiral meso arrangement of the ligands was observed. The catalytic activities and enantioselectivities of [{(S)‐PEBA}2Ln{N(SiMe3)2}] (Ln=Y, Lu) were investigated in hydroamination/cyclization reactions. A clear dependence of the rate of reaction and enantioselectivity on the ionic radius was observed, which showed higher reaction rates but poorer enantioselectivities for the yttrium compound.  相似文献   

8.
Rare‐earth‐metal borohydrides are known to be efficient catalysts for the polymerization of apolar and polar monomers. The bis‐borohydrides [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) have been synthesized by two different synthetic routes. The lanthanum and the lutetium complexes were prepared from [Ln(BH4)3(THF)3] and K{CH(PPh2NSiMe3)2}, whereas the yttrium analogue was obtained from in situ prepared [{CH(PPh2NSiMe3)2}YCl2]2 and NaBH4. All new compounds were characterized by standard analytical/spectroscopic techniques, and the solid‐state structures were established by single‐crystal X‐ray diffraction. The ring‐opening polymerization (ROP) of ε‐caprolactone initiated by [{CH(PPh2NSiMe3)2}La(BH4)2(THF)] and [{CH(PPh2NSiMe3)2}Ln(BH4)2] (Ln=Y, Lu) was studied. At 0 °C the molar mass distributions determined were the narrowest values (M?w/M?n=1.06–1.11) ever obtained for the ROP of ε‐caprolactone initiated by rare‐earth‐metal borohydride species. DFT investigations of the reaction mechanism indicate that this type of complex reacts in an unprecedented manner with the first B? H activation being achieved within two steps. This particularity has been attributed to the metallic fragment based on the natural bond order analysis.  相似文献   

9.
Ring‐opening polymerization of 1‐methyltrimethylene carbonate (MTMC) initiated by highly active single‐component rare earth tris(2,6‐di‐tert‐butyl‐4‐methylphenolate)s [Ln(OAr)3, Ln = La, Dy, Y] or yttrium isopropoxide [Y(OiPr)3] is reported for the first time. PolyMTMC (Mw = 8.4 × 104, molecular weight distributions = 1.5) initiated by La(OAr)3 at [MTMC]/[initiator] = 1000 was obtained with the yield over 99% in toluene within 1 h at 30 °C. Random and block copolymers of MTMC with ε‐caprolactone (CL), 2,2‐dimethyltrimethylene carbonate (DTC) or polyethylene glycol (PEG) including poly(MTMC‐r‐CL), poly(MTMC‐b‐CL), poly(MTMC‐r‐DTC), poly(MTMC‐b‐DTC), and poly(MTMC‐b‐PEG‐b‐MTMC) were synthesized. The differential scanning calorimetry results show that thermal behaviors of the polymers sensitively depend on their compositions and chain structures. Furthermore, the measurements of 1H‐1H COSY and density functional theory calculation are applied to investigate the mechanism. The polymerization of MTMC takes place according to a coordination‐insertion mechanism, and the ring is opened via acyl‐oxygen bond cleavage resulting in a Ln? O active center. There exist two ring‐opening modes of MTMC in which mode b , breaking the CH2O? CO bond, is the major pathway. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3807–3815, 2010  相似文献   

10.
Two novel sulfonate phenol ligands—3,3′‐di‐tert‐butyl‐2′‐hydroxy‐5,5′,6,6′‐tetramethyl‐biphenyl‐2‐yl 4‐X‐benzenesulfonate (X?CF3, LCF3 ‐H, and X?OCH3, LOMe ‐H)—were prepared through the sulfonylation of 3,3′‐di‐tert‐butyl‐5,5′,6,6′‐tetramethylbiphenyl‐2,2′‐diol with the corresponding 4‐substituted benzenesulfonyl chloride (1 equiv.) in the presence of excess triethylamine. Magnesium (Mg) complexes supported by sulfonate phenoxide ligands were synthesized and characterized structurally. The reaction of MgnBu2 with L‐H (2 equiv.) produces the four‐coordinated monomeric complexes ( LCF3 )2Mg ( 1 ) and ( LOMe )2Mg ( 2 ). Complexes 1 and 2 are efficient catalysts for the ring‐opening polymerization of ε‐caprolactone (ε‐CL) and trimethylene carbonate (TMC) in the presence of 9‐anthracenemethanol; complex 1 catalyzes the polymerization of ε‐CL and TMC in a controlled manner, yielding polymers with the expected molecular weights and narrow polydispersity indices (PDIs). In ε‐CL polymerization, the activity of complex 1 is greater than that of complex 2 , likely because of the greater Lewis acidity of Mg2+ metal caused by the electron‐withdrawing substitute trifluoromethyl (? CF3) at the 4‐position of the benzenesulfonate group. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3564–3572, 2010  相似文献   

11.
A series of N‐(2‐benzimidazolyquinolin‐8‐yl)benzamidate half‐titanocene chlorides, Cp′TiLCl ( C1 – C8 : Cp′ = C5H5, MeC5H4, or C5Me5; L = N‐(benzimidazolyquinolin‐8‐yl)benzamides)), was synthesized by the KCl elimination reaction of half‐titanocene trichlorides with the correspondent potassium N‐(2‐benzimidazolyquinolin‐8‐yl)benzamide. These half‐titanocene complexes were fully characterized by elemental and NMR analyses, and the molecular structures of complexes C2 and C8 were determined by the single‐crystal X‐ray diffraction. The high stability of the pentamethylcyclopentadienyl complex ( C8 ) was evident by no decomposing nature of its solution in air for one week. The oxo‐bridged dimeric complex ( C9 ) was isolated from the solution of the corresponding cyclopentadienyl complex ( C3 ) solution in air. Complexes C1 – C8 exhibited good to high catalytic activities toward ethylene polymerization and ethylene/α‐olefin copolymerization in the presence of methylaluminoxane (MAO) cocatalyst. In the typical catalytic system of C1/ MAO, the polymerization productivities were enhanced with either elevating reaction temperature or increasing the ratio of MAO to titanium precursor. In general, it was observed that higher the catalytic activity of the catalytic system lower the molecular weight of polyethylene. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3154–3169, 2009  相似文献   

12.
Four bis(pyrazolyl)pyridine Zn(II) and Cu(II) carboxylate complexes have been structurally elucidated and used as initiators in the ring‐opening polymerization (ROP) of ε‐carprolactone (ε‐CL). Reactions of bis(3,5‐dimethyl‐pyrazol‐1‐yl)pyridine ( L1 ) with the appropriate Zn(II) and Cu(II) carboxylates afforded the corresponding complexes; [Zn(L1)(C6H5COO)2] ( 1 ), [Zn(L1)(2‐Cl‐C6H4COO)2] ( 2 ), [Zn(L1)(OAc)2] ( 3 ) and [Cu(L1)(OAc)2] ( 4 ) in moderate to good yields. Molecular structures of compounds 1 , 2 , 3 confirmed the presence of one tridentate bound ligand L1 in the metal coordination sphere and two carboxylate anions to give five coordination number around Zn(II) and Cu(II) atoms. Complexes 1 , 2 , 3 , 4 initiated the ROP of ε‐CL at 110 °C to give polymers of moderate molecular weights. Kinetic analyses of the ROP reactions indicate pseudo ‐first‐order dependency on ε‐CL monomer and initiator. 1H NMR and mass spectral data established a coordination insertion mechanistic pathway and behaviour of 1 , 2 , 3 , 4 as initiators in the ROP of ε‐CL. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
Two new ring opening polymerization (ROP) initiators, namely, (3‐allyl‐2‐(allyloxy)phenyl)methanol and (3‐allyl‐2‐(prop‐2‐yn‐1‐yloxy)phenyl)methanol each containing two reactive functionalities viz. allyl, allyloxy and allyl, propargyloxy, respectively, were synthesized from 3‐allylsalicyaldehyde as a starting material. Well defined α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy bifunctionalized poly(ε‐caprolactone)s with molecular weights in the range 4200–9500 and 3600–10,900 g/mol and molecular weight distributions in the range 1.16–1.18 and 1.15–1.16, respectively, were synthesized by ROP of ε‐caprolactone employing these initiators. The presence of α‐allyl, α′‐allyloxy and α‐allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone)s was confirmed by FT‐IR, 1H, 13C NMR spectroscopy, and MALDI‐TOF analysis. The kinetic study of ROP of ε‐caprolactone with both the initiators revealed the pseudo first order kinetics with respect to ε‐caprolactone consumption and controlled behavior of polymerization reactions. The usefulness of α‐allyl, α′‐allyloxy functionalities on poly(ε‐caprolactone) was demonstrated by performing the thiol‐ene reaction with poly(ethylene glycol) thiol to obtain (mPEG)2‐PCL miktoarm star copolymer. α‐Allyl, α′‐propargyloxy functionalities on poly(ε‐caprolactone) were utilized in orthogonal reactions i.e copper catalyzed alkyne‐azide click (CuAAC) with azido functionalized poly(N‐isopropylacrylamide) followed by thiol‐ene reaction with poly(ethylene glycol) thiol to synthesize PCL‐PNIPAAm‐mPEG miktoarm star terpolymer. The preliminary characterization of A2B and ABC miktoarm star copolymers was carried out by 1H NMR spectroscopy and gel permeation chromatography (GPC). © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 844–860  相似文献   

14.
In this study, the catalytic behavior of dual catalysis based on isothioureas (ITUs) for ring‐opening polymerization (ROP) of macrolactone ω‐pentadecalactone (PDL) and its copolymerization with ε‐caprolactone (CL) has been investigated in detail. In the presence of benzyl alcohol (BnOH) initiator, 2,3,6,7‐tetrahydro‐5H‐thiazolo[3,2‐a]pyrimidine (THTP) acted as a representative organic compound, which coupled with magnesium halides (MgX2) as cocatalysts and catalyzed the polymerization in toluene at 70 °C. Under suitable conditions, an array of polymers with controlled molecular weights and relatively narrow molecular weight distributions were synthesized. The formation of homopolymers and copolymers with different architectures was verified using GPC, DSC, NMR, and matrix‐assisted laser desorption/ionization time‐of‐flight (MALDI‐ToF) mass. The MALDI‐ToF mass spectrometry (MS) analysis of poly(ω‐pentade‐calactone) (PPDL) provided direct evidence for the successful initiation of ROP of PDL using BnOH to obtain linear PPDL with a very small amount of oligomer. The NMR analysis indicated that the arrangements of PDL and CL units in the copolymer chains were completely random. The thermal stability of copolymers was composition dependent and increased with the increase in the content of PDL unit. Furthermore, the proposed polymerization mechanism is a dual catalytic mechanism. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019  相似文献   

15.
The ring-opening polymerization (ROP) of ε-caprolactone (ε-CL) using lanthanide thiolate complexes [(CH3CsH4)2Sm(μ-SPh)(THF)]2 (1) and Sm(SPh)3(HMPA)3 (2) as initiators has been investigated for the first time. Both of 1 and 2 were found to be highly efficient initiators for the ROP of ε-CL. The poly(ε-caprolactone) (PCL) with molecular weight Mn up to 1.97 ×10^5 and relatively narrow molecular weight distributions (1.20〈MW/Mn〈 2.00) have been obtained in high yield in the temperature range of 35-65℃. According to the polymer yield, 2 showed much higher activity than 1. However, the number-average molecular weight of PCL obtained with 2 was much lower than with 1. The possible polymerization mechanism of the ε-CL polymerization has been proposed based on the results of the end group analysis of the ε-CL oligomer.  相似文献   

16.
6‐Benzimidazolylpyridyl‐2‐carboximidic half‐titanocene complexes, Cp′TiLCl (Cp′ = C5H5, MeC5H4, C5Me5, L = 6‐benzimidazolylpyridine‐2‐carboxylimidic, C1–C13 ), were synthesized and characterized along with single‐crystal X‐ray diffraction. The half‐titanocene chlorides containing substituted cyclopentadienyl groups, especially pentamethylcyclopentadienyl groups were more stable, while those without substituents on the cyclopentadienyl groups were easily transformed into their dimeric oxo‐bridged complexes, (CpTiL)2O ( C14 and C15 ). In the presence of excessive amounts of methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all half‐titanocene complexes showed high catalytic activities for ethylene polymerization. The substituents on the Cp groups affected the catalytic behaviors of the complexes significantly, with less substituents favoring increased activities and higher molecular weights of the resultant polyethylenes. Effects of reaction conditions on catalytic behaviors were systematically investigated with catalytic systems of mononuclear C1 and dimeric C14 . With C1 /MAO, large MAO amount significantly increases the catalytic activity, while the temperature only has a slight effect on the productivity. In the case of C14 /MAO catalytic system, temperature above 60 °C and Al/Ti value higher than 5000 were necessary to observe good catalytic activities. In both systems, higher reaction temperature and low cocatalyst amount gave the polyethylenes with higher molecular weights. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3396–3410, 2008  相似文献   

17.
孙维林 《高分子科学》2011,29(3):296-299
The biphenol based discrete ion-pair rare earth complexes,[Ln(EDBP)2(DME)Na(DME)3][Ln=Er(1),Yb(2), Sm(3)],were prepared and used as catalysts for the ring-opening polymerization(ROP)of 2,2-dimethyltrimethylene carbonate(DTC).Three complexes show moderate activities for the polymerization,and the catalytic activities increase in the following sequence:(Yb2 elimination was prepared.  相似文献   

18.
Monocyclopentadienyl titanium imidazolin‐2‐iminato complexes [Cp′Ti(L)X2] 1a (Cp′ = cyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), 1b (X = CH3); 2 (Cp′ = cyclopentadienyl, L = 1,3‐diisopropylimidazolin‐2‐imide, X = Cl); 3 (Cp′ = tert‐butylcyclopentadienyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide, X = Cl), upon activation with methylaluminoxane (MAO) were active for the polymerization of ethylene and propylene and the copolymerization of ethylene and 1‐hexene. Catalysts derived from imidazolin‐2‐iminato tropidinyl titanium complex 4 = [(Trop)Ti(L)Cl2] (Trop = tropidinyl, L = 1,3‐di‐tert‐butylimidazolin‐2‐imide) were much less active. Narrow polydispersities were observed for ethylene and propylene polymerization, but the copolymerization of ethylene/hexene led to bimodal molecular weight distributions. The productivity of catalysts derived from the dialkyl complex 1b activated with [Ph3C][B(C6F5)4] or B(C6F5)3 were less active for ethylene/hexene copolymerization but yielded ethylene/hexene copolymers of narrower molecular weight distributions than those derived from 1a/MAO. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6064–6070, 2008  相似文献   

19.
Treatment of the chlorides (L2,6‐iPr2Ph)2LnCl (L2,6‐iPr2Ph = [(2,6‐iPr2C6H3)NC(Me)CHC(Me)N(C6H5)]?) with 1 equiv. of NaNH(2,6‐iPr2C6H3) afforded the monoamides (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Y ( 1 ), Yb ( 2 )) in good yields. Anhydrous LnCl3 reacted with 2 equiv. of NaL2,6‐iPr2Ph in THF, followed by treatment with 1 equiv. of NaNH(2,6‐iPr2C6H3), giving the analogues (L2,6‐iPr2Ph)2LnNH(2,6‐iPr2C6H3) (Ln = Sm ( 3 ), Nd ( 4 )). Two monoamido complexes stabilized by two L2‐Me ligands, (L2‐Me)2LnNH(2,6‐iPr2C6H3) (L2‐Me = [N(2‐MeC6H4)C(Me)]2CH)?; Ln = Y ( 5 ), Yb ( 6 )), were also synthesized by the latter route. Complexes 1 , 2 , 3 , 4 , 5 , 6 were fully characterized, including X‐ray crystal structure analyses. Complexes 1 , 2 , 3 , 4 , 5 , 6 are isostructural. The central metal in each complex is ligated by two β‐diketiminato ligands and one amido group in a distorted trigonal bipyramid. All the complexes were found to be highly active in the ring‐opening polymerization of L‐lactide (L‐LA) and ε‐caprolactone (ε‐CL) to give polymers with relatively narrow molar mass distributions. The activity depends on both the central metal and the ligand (Yb < Y < Sm ≈ Nd and L2‐Me < L2,6‐iPr2Ph). Remarkably, the binary 3/benzyl alcohol (BnOH) system exhibited a striking ‘immortal’ nature and proved able to quantitatively convert 5000 equiv. of L‐LA with up to 100 equiv. of BnOH per metal initiator. All the resulting PLAs showed monomodal, narrow distributions (Mw/Mn = 1.06 ? 1.08), with molar mass (Mn) decreasing proportionally with an increasing amount of BnOH. The binary 4/BnOH system also exhibited an ‘immortal’ nature in the polymerization of ε‐CL in toluene. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Ethylene oxide (EO) has been block‐polymerized with both ε‐caprolactone (ε‐CL) and γ‐methyl‐ε‐caprolactone (MCL) through the combination of the anionic polymerization of EO and the ring‐opening polymerization (ROP) of ε‐CL and MCL. ω‐Hydroxyl poly(ethylene oxide) has been reacted with triethylaluminum (OH/Al = 1) and converted into a macroinitiator for ROP of ε‐CL and MCL. In toluene at room temperature, this polymerization leads to a bimodal molecular weight distribution as a result of monomer insertion in only some of the aluminum alkoxide bonds. However, in a more polar solvent (methylene chloride) added with 1 equiv of a Lewis base (pyridine), the expected diblock is formed selectively, and this indicates that aggregation of the active species in toluene is responsible for a macroinitiator efficiency of less than 1. A series of amphiphilic diblock copolymers with poly(ε‐caprolactone) (semicrystalline) and poly(γ‐methyl‐ε‐caprolactone) (amorphous) as the hydrophobic blocks have been prepared and characterized with size exclusion chromatography, 1H NMR, IR, and wide‐angle X‐ray scattering. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1132–1142, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号