首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed ultrabroadband (>2000 cm(-1)) multiplex coherent anti-Stokes Raman scattering (CARS) spectroscopy using a subnanosecond (sub-ns) microchip laser source. A photonic crystal fiber specifically designed for sub-ns supercontinuum (SC) generation has been used for obtaining ultrabroadband Stokes radiation, which enables us to achieve simultaneous vibrational excitation in the range from 800 to 3000 cm(-1). We have successfully obtained multiplex CARS spectra for several molecular liquids. Since the CARS system using the sub-ns SC is simple and compact, it can be easily applied to ultrabroadband multiplex CARS microspectroscopy.  相似文献   

2.
Roy S  Meyer TR  Gord JR 《Optics letters》2005,30(23):3222-3224
Broadband picosecond coherent anti-Stokes Raman scattering (CARS) spectroscopy of nitrogen is demonstrated using 145-ps pump and probe beams and a 115-ps Stokes beam with a spectral bandwidth of 5 nm. This is, to our knowledge, the first demonstration of broadband CARS using subnanosecond lasers. The short temporal envelope of the laser pulses and the broadband spectral nature of the Stokes beam will enable nonresonant-background-free, single-shot, or time-dependent spectroscopy in high-pressure or hydrocarbon-rich environments. Successful correlation of room-temperature broadband picosecond N2 CARS with a theoretical spectrum is presented.  相似文献   

3.
A novel approach toward phase‐locking of two independently produced yet energetically degenerate coherent anti‐Stokes Raman scattering (CARS) processes is put forward. The proposed all‐optical implementation involves a modified Mach–Zehnder interferometer, which is utilized to transfer phase coherence from three totally uncorrelated laser beams into two degenerate CARS beams that are produced in two distinct Raman active samples. Such a CARS interferometer based on coherent phase transport allows explicit measurement and control of phase differences between the two phase‐locked degenerate CARS processes, and hence may find applications in pertinent research fields such as CARS spectroscopy (tomography) as well as quantum information processing and transfer. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
Summary In this paper we present a vibrational-spectroscopy technique which combines the advantages of coherent anti-Stokes Raman spectroscopy (CARS) and linear Raman difference spectroscopy. The method which we call CARS difference spectroscopy can be applied for the study of small frequency shifts and/or bandwidth changes in the CARS spectra of liquid mixtures and solutions. First we develop the theory necessary for the interpretation of experimental data obtained from CARS difference measurements of mixtures of two Raman-active liquids and present some model calculations for benzene-toluene mixtures of different concentrations. Then the experimental arrangement used for CARS difference measurements as well as some examples of recorded spectra are described. We show that it is possible to observe the effects of dilution on CARS spectra with high accuracy by applying the discussed technique. Paper presented at the “XI European CARS Workshop”, Florence, Italy, 23–25 March, 1992.  相似文献   

5.
Nonlinear-optical interactions, such as second-harmonic and sum-frequency generation and coherent anti-Stokes Raman spectroscopy (CARS), are investigated in porous GaP for the first time by means of a novel laser source based on mode-locked picosecond Nd3+:YVO4 laser and subsequent continuum generation in an optical fiber. The efficiency of the former two nonlinear optical processes is shown to be strongly dependent on the wavelengths of the interacting waves and tends to increase with the decrease of the excitation wavelength. The power of the generated second-harmonic and sum-frequency increases by a factor of 2 and 30, respectively, compared to the crystalline GaP. In contrast, the CARS signal in porous GaP is found to be less efficient than one in crystalline GaP. The observed results are explained in terms of competition of the phase-matching effects in GaP nanocrystals and the enhanced photon lifetime in scattering porous GaP layers. PACS 42.25.Dd; 42.65.Ky; 42.70.Nq; 81.07.Bc  相似文献   

6.
Femtosecond time-resolved coherent anti-Stokes Raman scattering (CARS) spectroscopy is used to investigate gaseous molecular dynamics. Due to the spectrally broad laser pulses, usually poorly resolved spectra result from this broad spectroscopy. However, it can be demonstrated that by the electronic resonance enhancement optimization control a selective excitation of specific vibrational mode is possible. Using an electronically resonance-enhanced effect, iodine molecule specific CARS spectroscopy can be obtained from a mixture of iodine-air at room temperature and a pressure of 1 atm (corresponding to a saturation iodine vapour as low as about 35 Pa). The dynamics on either the electronically excited state or the ground state of iodine molecules obtained is consistent with previous studies (vacuum, heated and pure iodine) in the femtosecond time resolved CARS spectroscopy, showing that an effective method of suppressing the non-resonant CARS background and other interferences is demonstrated.  相似文献   

7.
The simultaneous application of pure rotational coherent anti-Stokes Raman spectroscopy (CARS) and vibrational linear Raman spectroscopy (LRS) for the measurement of temperature and species concentrations in combustion systems is demonstrated. In addition to the standard rotational CARS experimental setup, only one detection system (spectrometer and intensified CCD camera) for the collection of the LRS signals was applied. The emission of the broadband dye laser used for CARS was shifted to the deep red to avoid interferences with the LRS signals located in the visible region. First experimental results from a vaporizing propane spray using an engine injection system are shown.  相似文献   

8.
In this letter, we, for the first time, report on coherent anti-Stokes Raman scattering (CARS) spectroscopy of an ensemble of silicon nanowires (SiNWs) formed by wet chemical etching of crystalline silicon with a mask of silver nanoparticles. The fabricated SiNWs have diameter ranged from 30 to 200 nm and demonstrate both visible and infrared photolumine cence (PL) and spontaneous Raman signal, with their intensities depending on presence of silver nanoparticles in SiNWs. The efficiency of CARS in SiNW ensembles is found to be significantly higher than that in crystalline silicon. The results of CARS and PL measurements are explained in terms of resonant excitation of the electron states attributed to silicon nanoparticles.  相似文献   

9.
We report a novel Fourier-transform-based implementation of coherent anti-Stokes Raman scattering (CARS) microscopy. The method employs a single femtosecond laser source and a Michelson interferometer to create two pulse replicas that are fed into a scanning multiphoton microscope. By varying the time delay between the pulses, we time-resolve the CARS signal, permitting easy removal of the nonresonant background while providing high resolution, spectrally resolved images of CARS modes over the laser bandwidth (approximately 1500 cm(-1)). We demonstrate the method by imaging polystyrene beads in solvent.  相似文献   

10.
Coherent anti‐Stokes Raman scattering (CARS) spectroscopy of gas‐phase CO2 is demonstrated using a single femtosecond (fs) laser beam. A shaped ultrashort laser pulse with a transform‐limited temporal width of ∼7 fs and spectral bandwidth of ∼225 nm (∼3500 cm−1) is employed for simultaneous excitation of the CO2 Fermi dyads at ∼1285 and ∼1388 cm−1. CARS signal intensities for the two Raman transitions and their ratio as a function of pressure are presented. The signal‐to‐noise ratio of the single beam–generated CO2 CARS signal is sufficient to perform concentration measurements at a rate of 1 kHz. The implications of these experiments for measuring CO2 concentrations and rapid pressure fluctuations in hypersonic and detonation‐based chemically reacting flows are also discussed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
Ganikhanov F  Evans CL  Saar BG  Xie XS 《Optics letters》2006,31(12):1872-1874
We demonstrate a new approach to coherent anti-Stokes Raman scattering (CARS) microscopy that significantly increases the detection sensitivity. CARS signals are generated by collinearly overlapped, tightly focused, and raster scanned pump and Stokes laser beams, whose difference frequency is rapidly modulated. The resulting amplitude modulation of the CARS signal is detected through a lock-in amplifier. This scheme efficiently suppresses the nonresonant background and allows for the detection of far fewer vibrational oscillators than possible through existing CARS microscopy methods.  相似文献   

12.
Chirped-probe-pulse (CPP) femtosecond (fs) coherent anti-Stokes Raman scattering (CARS) spectroscopy for single-laser-shot temperature measurements in flames is discussed. In CPP fs CARS, a giant Raman coherence is created in the medium by impulsive pump-Stokes excitation, and the temperature-dependent temporal decay of this initial coherence is mapped into the frequency of the CARS signal using a CPP. The theory of the CPP fs CARS technique is presented. A computer code has been developed to calculate theoretical CPP fs CARS spectra. The input parameters for the calculation of the theoretical spectra include the temperature, probe time delay, ratio of the resonant and nonresonant susceptibilities, and parameters for characterizing the pump, Stokes and probe pulses. The parameters for characterizing the pump, Stokes and probe pulses are determined from the best fit of theoretical spectra to experimental spectra acquired from calibration flames at a known temperature. For spectra acquired in subsequent measurements, these laser parameters are fixed and temperature is determined as one of the fit parameters from the best fit of theoretical spectra to experimental spectra. For single-laser-shot CPP fs CARS temperature measurements performed in steady, near-adiabatic flames, the best-fit temperature distribution width is typically less than 1.5% of the mean temperature. The mean temperature is accurate to within approximately 3% with respect to the adiabatic flame temperature. The most significant limitation on temperature measurement accuracy is associated with the evaluation of the theoretical laser parameters. Significant improvements in the temperature measurement accuracy are expected once monitoring equipment capable of characterizing the spectrum and phase of each laser pulse is incorporated in the experiments.  相似文献   

13.
Microstructure fibers are shown to allow the creation of new tunable sources for femtosecond nonlinear spectroscopy. These fibers provide a high efficiency of frequency upconversion of regeneratively amplified femtosecond pulses of a Cr:forsterite laser, permitting the generation of subpicosecond anti-Stokes pulses with a smooth temporal envelope and a linear positive chirp. These pulses from a microstructure fiber were used to measure the spectra of coherent anti-Stokes Raman scattering (CARS) of toluene solution by cross-correlating these pulses with the femtosecond second-harmonic output of the Cr:forsterite laser in boxcars geometry (XFROG CARS). PACS 42.65.Wi; 42.81.Qb  相似文献   

14.
邓莉 《物理学报》2011,60(7):77801-077801
采用两束圆偏振啁啾飞秒激光脉冲,非共线相干激发三原子分子CS2液体. 在相位匹配的方向上,探测到由CS2频率为397 cm-1的振动模式产生的强度对称分布的相干反斯托克斯拉曼散射(CARS)信号和相干斯托克斯拉曼散射(CSRS)信号. 当调整两束激发光的圆偏振状态时,CARS,CSRS信号的强度、偏振、波长均发生规律性的改变:CARS,CSRS信号的强度分布反映了CS2 在不同极化状态下的受激拉曼散射截面大小;信号光的 关键词: 啁啾脉冲 相干反斯托克斯拉曼散射(CARS) 相干斯托克斯拉曼散射(CSRS) 2')" href="#">CS2  相似文献   

15.
Lee YJ  Liu Y  Cicerone MT 《Optics letters》2007,32(22):3370-3372
We demonstrate that a broadband coherent anti-Stokes Raman scattering (CARS) spectrum generated with a typical two-pulse scheme contains two distinct, significant signals: '2-color' CARS, where the pump and probe are provided by a narrowband pulse and the continuum pulse constitutes the Stokes light, and '3-color' CARS, where the pump and Stokes are provided by two different frequency components in the continuum pulse and the narrowband pulse serves as the probe. The CARS spectra from the two different mechanisms show distinct characteristics in Raman shift range, laser power dependence, and chirping dependence. We discuss the potential for a 3-color CARS signal to cover the fingerprint region with reduced photodamage of live cells. Official contribution of the National Institute of Standards and Technology; not subject to copyright in the United States.  相似文献   

16.
The nonlinear Raman methods IRS and CARS are compared according to the signal detectability at excitation of molecules under the condition of one-photon resonance. At one photon resonance it is the background contribution resulting from the scattering molecules themselves that determines the maximum attainable signal to noise ratio. These contributions acting for IRS and CARS respectively are compared. The essential difference between IRS and CARS results from a 3rd order saturation contribution to IRS, which may mask the IRS Raman signal near exact resonance while it does not contribute to CARS. This gives to CARS the preference before IRS at resonance excitation. The situation for IRS with respect to background is similar to that of spontaneous Raman scattering, where the resonance fluorescence — corresponding to the saturation contribution at IRS — masks the resonance Raman signal.  相似文献   

17.
Beyrau F  Weikl MC  Seeger T  Leipertz A 《Optics letters》2004,29(20):2381-2383
An external optical cavity pulse stretcher for nanosecond-long laser pulses has been applied to coherent anti-Stokes Raman spectroscopy (CARS). An increased signal-to-noise ratio was achieved for both vibrational and pure rotational CARS, while the power density of the laser beams remained constant. Moreover, it was demonstrated that the use of the pulse stretcher also leads to improved precision of the determined temperatures and concentrations as a result of repeated excitation of the dye laser.  相似文献   

18.
Lim SH  Caster AG  Leone SR 《Optics letters》2007,32(10):1332-1334
A novel Fourier transform spectral interferometric (FTSI) multiplex coherent anti-Stokes Raman scattering (CARS) technique is developed to extract the vibrational spectrum equivalent to the spontaneous Raman scattering. The conventional FTSI method is modified to use the internal nonresonant CARS signal as a local oscillator to perform spectral interferometry. Utilizing the causality of the coherent vibration (i.e., there should be no signal before the laser excitation), this new FTSI method recovers the entire complex vibrational spectral parameters. We demonstrate this technique with a previously reported single-pulse multiplex CARS method that uses a single phase-controlled broadband ultrafast laser pulse.  相似文献   

19.
Wang H  Huff TB  Cheng JX 《Optics letters》2006,31(10):1417-1419
We demonstrate laser-scanning coherent anti-Stokes Raman scattering (CARS) imaging with two excitation laser beams delivered by a large-mode-area photonic crystal fiber. The group-velocity dispersion and self-phase modulation effects are largely suppressed due to the large mode area of the fiber and the use of picosecond pulses. The fiber delivery preserves the signal level and image spatial resolution well. High-quality images of live spinal cord tissues are acquired using the fiber-delivered laser source. Our method provides a basic platform for developing a flexible and compact CARS imaging system.  相似文献   

20.
Summary Exploiting the polarization properties of coherent Raman scattering in liquids, new techniques of polarization-controlled 3-colour CARS are described. It is shown that the nonresonant, resonant-isotropic and resonant-anisotropic scattering components can be alternatively eliminated for special geometries with magic angles of the polarization of the detected anti-Stokes signal. Perturbations via the optical Kerr effect are discussed. The potential to study the molecular reorientational motion and isolated dephasing channels is demonstrated. Paper presented at the ?XI European CARS Workshop”, Florence, Italy, 23–25 March, 1992.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号