首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The motion of a single bubble rising freely in quiescent non-Newtonian viscous fluids was investigated experimentally and computationally. The non-Newtonian effects in the flow of viscous inelastic fluids are modeled by the Carreau rheological model. An improved level set approach for computing the incompressible two-phase flow with deformable free interface is used. The control volume formulation with the SIMPLEC algorithm incorporated is used to solve the governing equations on a staggered Eulerian grid. The simulation results demonstrate that the algorithm is robust for shear-thinning liquids with large density (ρ1/ρg up to 103) and high viscosity (η1/ηg up to 104). The comparison of the experimental measurements of terminal bubble shape and velocity with the computational results is satisfactory. It is shown that the local change in viscosity around a bubble greatly depends on the bubble shape and the zero-shear viscosity of non-Newtonian shear-thinning liquids. The shear-rate distribution and velocity fields are used to elucidate the formation of a region of large viscosity at the rear of a bubble as a result of the rather stagnant flow behind the bubble. The numerical results provide the basis for further investigations, such as the numerical simulation of viscoelastic fluids.  相似文献   

2.
The interaction between Taylor bubbles rising in stagnant non-Newtonian solutions was studied. Aqueous solutions of carboxymethylcellulose (CMC) and polyacrylamide (PAA) polymers were used to study the effect of different rheological properties: shear viscosity and viscoelasticity. The solutions studied covered a range of Reynolds numbers between 10 and 714, and Deborah numbers up to 14. The study was performed with pairs of Taylor bubbles rising in a vertical column (0.032 m internal diameter) filled with stagnant liquid. The velocities of the leading and trailing bubbles were measured by sets of laser diodes/photocells placed along the column. The velocity of the trailing bubble was analysed together with the liquid velocity profile in the wake of a single rising bubble (Particle Image Velocimetry data obtained from the literature). For the less concentrated CMC solutions, with moderate shear viscosity and low viscoelasticity, the interaction between Taylor bubbles was similar to that found in Newtonian fluids. For the most concentrated CMC solution, which has high shear viscosity and moderate viscoelasticity, a negative wake forms behind the Taylor bubbles, inhibiting coalescence since the bubbles maintain a minimum distance of about 1D between them. For the PAA solutions, with moderate shear viscosity but higher viscoelasticity than the CMC solutions, longer wake lengths are seen, which are responsible for trailing bubble acceleration at greater distances from the leading bubble. Also in the PAA solutions, the long time needed for the fluid to recover its initial shear viscosity after the passage of the first bubble makes the fluid less resistant to the trailing bubble flow. Hence, the trailing bubble can travel at a higher velocity than the leading bubble, even at distances above 90D.  相似文献   

3.
The motion of long bubbles through viscoelastic fluids in capillary tubes   总被引:2,自引:0,他引:2  
The penetration of long gas bubble through a viscoelastic fluid in a capillary tube has been studied in order to investigate the influence of viscoelastic material properties on the hydrodynamic coating thickness and local flow kinematics. Experiments are conducted for three tailored ideal elastic (Boger) fluids, designed to exhibit similar steady shear properties but substantially different elastic material functions. This allows for the isolation of elastic and extensional material effects on the bubble penetration process. The shear and extensional rheology of the fluid is characterized using rotational and filament stretching rheometers (FSR). The fluids are designed such that the steady-state extensional viscosity measured by the FSR at a Deborah number (De) greater than 1 differs over three orders of magnitude (Trouton ratio = 103–106). The experiment set up to measure the hydrodynamic coating thickness is designed to provide accurate data over a wide range of capillary numbers (0.01 < Ca < 100). The results indicate that the coating thickness in this process increases with an increase in the extensionally thickening nature of the fluid. Experiments are also conducted using several different capillary tube diameters (0.1 < D < 1 cm), in order to compare responses at similar Ca but different flow De. Suitable scaling methods and nonlinear viscoelastic constitutive equations are explored to characterize the displacement process for polymeric fluids. Bubble tip shapes at different De are recorded using a CCD camera, and measured using an edge detection algorithm. The influence of the mixed flow field on the bubble tip shape is examined. Particle tracking velocimetry experiments are conducted to compare the influence of viscoelastic properties on the velocity field in the vicinity of the bubble tip. Local shear and extension rates are calculated in the vicinity of the bubble tip from the velocity data. The results provide quantitative information on the influence of elastic and extensional properties on the bubble penetration process in gas-assisted injection molding. The bubble shape and velocity field information provides a basis for evaluating the performance of constitutive equations in mixed flow. Received: 19 January 1999 Accepted: 30 June 1999  相似文献   

4.
This paper is concerned with the analysis of motion of a gas bubble in a uniformly oscillating incompressible fluid. A theoretical model explaining the effect of sinking of gas bubbles in the absence of a standing pressure wave is validated experimentally. The conditions under which this effect occurs are determined, and a simple formula is derived for the average velocity of a gas bubble in the fluid.  相似文献   

5.
Two-fluid model used for free surface flows with large characteristic scales is improved; the smeared interface is sharpened with conservative level set method and the surface tension force with wetting angle is implemented. Surface tension force is split between two phases with several models. Detailed analysis showed the splitting of surface tension force with volume averaging as the most appropriate. The improved two-fluid model with interface sharpening and implemented surface tension is validated on several test cases. The pressure jump over a droplet interface test case showed that the pressure jump in simulation converges with grid refinement to the analytical one. The parasitic currents in simulation are one order of magnitude larger than in simulation with volume of fluid model. In the oscillating droplet test case the time period of oscillating droplet with initially ellipsoid or square shape is similar to the analytical time period. In the rising bubble test case, the rising bubble position, terminal velocity, and circularity are similar to the one observed in simulations with level set model. The wetting angle is implemented in the two-fluid model with interface sharpening and surface tension force. Model is tested in the simulation of droplet in contact with wall with different wetting angles.  相似文献   

6.
A three-dimensional Direct Numerical Simulation (DNS) of a laminar separation bubble in the presence of oscillating flow is performed. The oscillating flow induces a streamwise pressure gradient varying in time. The special shape of the upper boundary of the computational domain, together with the oscillating pressure gradient causes the boundary layer flow to alternately separate and re-attach. When the inflow decelerates, the shear layer starts to separate and rolls up. Simultaneously the flow becomes 3D. After a transient period, the phase-averaged reverse flow inside the separation bubble reaches speeds ranging from 20 up to 150% of the free-stream velocity. During these phases, the flow is absolutely unstable and self-sustained turbulence can exist. When the inflow starts to accelerate, a spanwise roll of turbulent flow is shed from the shear layer. Shortly after this, the remainder of the separation bubble moves downstream and rejoins with the shed turbulent roll. During the flow-acceleration phase, a patch of laminar boundary layer flow is obtained. Along the flat plate, a series of turbulent patches of flow travelling downstream, separated by laminar flow can be observed, reminiscent of boundary layer flow in a turbine cascade with periodically appearing free-stream disturbances.  相似文献   

7.
An experimental investigation of single helium bubbles rising in a stagnant molten fluoride salt mixture was conducted in a 25.4 mm quartz tube at 600 °C and atmospheric pressure. The fluoride salt chosen for this research was the eutectic mixture of LiF-NaF-KF (46.5–11.5–42%), also known as FLiNaK. The images obtained using a high-speed camera were processed to estimate the bubble size, rising velocity, trajectory and shape. The shape of the bubble showed typical characteristics of wobbling bubble corresponding to published classifications. The trajectory of the rising bubble showed complex path oscillations and combinations of rectilinear, zig-zag and helical motion. The projected area-equivalent diameter and experimental terminal velocity varied from 5.26 to 6.23 mm and 232.35–259.57 mm/s, respectively. Several important dimensionless numbers were calculated and reported based on the experimental results, which are closely related to the phenomena involving a gas bubble rising in liquid. The measured terminal velocity was compared with the predictions of existing correlations that include the dimensionless numbers and showed reasonable agreement. The Particle Image Velocimetry (PIV) technique was applied to complement the experimental data set with high-fidelity measurements of the velocity field of the liquid molten salt surrounding the bubble. The paper presents a unique set of PIV and two-phase experimental data capturing the behavior of rising helium bubbles in molten FLiNaK and its surrounding flow field.  相似文献   

8.
In the present paper the results of investigations in flashing flow behind a sudden constriction in vertical upflow are described. Flow visualization, laser-Doppler and phase-Doppler anemometry have been used to measure local bubble and fluid velocities, local bubble sizes and void fractions. The measurements were performed in the midplane of a two-dimensional channel with a 2:1 stepwise constriction.It was found that bubble nucleation takes place in the recirculation zone immediately behind the constriction, which is the location of the lowest static pressure. These bubbles are transported downstream by the mean flow field, while undergoing further growth. No additional nucleation was observed downstream of the recirculation zone. A periodic, cloudwise behaviour of the bubble formation was found which could be explained by the interaction between the bubble growth and the mean flow field. This interaction results in strong disturbances of the mean flow field, which show up as an increase of the fluctuating bubble velocity by a factor of 3 compared to single-phase measurements in a region of 10 step heights behind the constriction. However, these fluctuations appear more like a periodic change in the mean velocity rather than a higher turbulence level. The measured arithmetic mean bubble diameters rise from approx. 50 μm in the recirculation region to about 70–80 μm 50 step heights downstream. Maximum local bubble number density and void fraction were found to be 160001/cm3 and 0.8%, respectively.  相似文献   

9.
A computational analysis is carried out to ascertain the effects of steady and pulsatile co-current flow, on the dynamics of an air bubble rising in a vertical tube containing water or a solution of Carboxymethylcellulose (CMC) in water. The mass fraction (mf) of CMC in the solution is varied in the range 0.1%  mf  1% to accommodate zero-shear dynamic viscosities in the range 0.009–2.99 Pa-s. It was found that the transient and time-averaged velocities of Taylor bubbles are independent of the bubble size under both steady as well as pulsatile co-current flows. The lengths of the Taylor bubbles under the Newtonian conditions are found to be consistently greater than the corresponding shear-thinning non-Newtonian conditions for any given zero-shear dynamic viscosity of the liquid. In contrast to observations in stagnant liquid columns, an increase in the dynamic viscosity of the liquid (under Newtonian conditions) results in a concomitant increase in the bubble velocity, for any given co-current liquid velocity. In shear-thinning liquids, the change in the bubble velocity with an increase in mf is found to be relatively greater at higher co-current liquid velocities. During pulsatile shear-thinning flows, distinct ripples are observed to occur on the bubble surface at higher values of mf, the locations of which remain stationary with reference to the tube for any given pulsatile flow frequency, while the bubble propagated upwards. In such a pulsatile shear-thinning flow, a localised increase in dynamic viscosity is accompanied near each ripple, which results in a localised re-circulation region inside the bubble, unlike a single re-circulation region that occurs in Newtonian liquids, or shear-thinning liquids with low values of mf. It is also seen that as compared to frequency, the amplitude of pulsatile flow has a greater influence on the oscillating characteristics of the rising Taylor bubble. The amplitude of oscillation in the bubble velocity increases with an increase in the CMC mass fraction, for any given value of pulsatile flow amplitude.  相似文献   

10.
An experimental investigation of cocurrent bubble flow in 0.0254 m and 0.0508 m diameter horizontal pipelines has been performed. Gas and liquid mass velocities ranged from 0.00955 to 0.675 and 2720 to 6040 kg/m2 sec, respectively, and gas-phase holdups or void fractions ranged from 0.13 to 7.59%.High speed motion pictures revealed that the gas, introduced into the liquid with a concentric nozzle, emerged in the form of a rough jet which was ultimately sheared into 1 times; 10minus;3 to 3 times; 10minus;3m diameter bubbles. Approximately 4 meters downstream from the nozzle, a well developed bubble flow was observed where bubble number density and axial velocity were constant with respect to axial position in the pipeline. Bubble velocities ranged from 0.001 to 0.57 m/sec greater than the average liquid velocities. Bubble radial and circumferential spatial distributions were found to be a strong function of the degree of turbulence in the liquid phase. Because of these turbulent flow conditions, bubble shapes were much different than those of equivalent diameter bubbles rising in stagnant liquids. A sphere-ellipsoid of revolution model was developed for characterization of bubble shape and computation of gas-liquid interfacial area and two-phase pressure drop.  相似文献   

11.
A study has been made of the motion of long bubbles in inclined pipes containing viscous Newtonian and non-Newtonian liquids. A semi-theoretical expression for the rise velocity of air bubbles in water is derived on the hypothesis that the dominant factor is the momentum exchange of the bubble underflow, i.e. the bubble nose shape. The correlation calls on empirical inputs from established literature on bubble rise speeds at high Reynolds number. The effects of increasing Newtonian viscosity are analysed with reference to the momentum exchange and it is shown how viscosity reduces the inclination dependence of the bubble Froude number. Results from an experimental survey in seven different non-Newtonian liquids in three different diameter pipes are presented. These data are correlated so as to decouple the effects of surface tension and viscosity. An empirical relation is proposed for the effective shear rate in the fluid travelling around the bubble nose. Our correlation is compared to literature data from a broad range of Reynolds numbers with excellent agreement except at shallow angles.  相似文献   

12.
The air bubble rise velocity in still water depends mainly on the bubble size and is basically influenced by buoyancy, viscosity and surface tension. In high-speed flows the number of forces acting on air bubbles increases with turbulence, non-hydrostatic pressure gradient, shear forces, bubble clouds and free-surface entrainment. Air bubbles in these flows are used for cavitation protection of hydraulic structures such as chutes, spillways and bottom outlets. Here, air is normally added by means of aerators upstream of regions where the cavitation number falls below a critical value mainly to reduce the sonic velocity of the fluid and cushion the cavitation bubble collapse process. The distance between successive aerators depends basically on the bubble rise velocity. Until today, the bubble rise velocity in high-speed flows was not thoroughly investigated because of limited laboratory instrumentation. The present project focused on the streamwise development of air concentrations in high-speed flows along a 14 m long model chute. The bubble rise velocity was indirectly derived from the air detrainment gradient of the air concentration contour lines downstream of an aeration device. It accounts for the main hydraulic parameters chute slope, Froude number and air concentration. It is demonstrated that the bubble rise velocity in high-speed flow and stagnant water differ significantly due to fracturing processes, turbulence, and the ambient air concentration.  相似文献   

13.
油--气润滑过程中润滑油液滴受高速气流扰动易形成含气泡油滴,微气泡将对油滴撞击壁面时的运动过程以及壁面油膜 层的形成质量产生重要影响. 基于耦合的水平集--体积分数 方法,对含气泡油滴撞击油膜壁面行为进行数值模拟研究, 考察含气泡油滴撞击油膜壁面时气泡的变形运动过程,探讨气泡破裂的动力学机制,分析气泡大小、碰撞速度和液体黏度等因素对含气 泡油滴撞壁过程中气泡变形特征参数的影响规律. 研究表明:含气泡油滴撞击油膜壁面后气泡会发生变形,并破裂形成膜液滴;气泡随同 液滴运动过程中,气泡内外压力和速度梯度变化是使气泡发生破裂的主要诱因. 气泡大小对气泡破裂方式影响较大,气泡较小时发生单 点破裂,而气泡较大时更容易发生多处破裂. 不同大小气泡受力差异较大,气泡大小与破裂发生时刻没有明显相关性. 碰撞速度和液体 黏度对气泡的变形、破裂和破裂发生时刻都具有一定的影响. 碰撞速度越大,油滴动能越大,更容易产生气泡变形和破裂现象. 液体黏 度增大,在油滴撞壁运动前期促进气泡变形,而在运动后期可以阻延气泡破裂行为发生.   相似文献   

14.
Pressurized fluidized beds have been developed in quite a few industrial applications because of intensified heat and mass transfer and chemical reaction. The bubble behaviors under elevated pressure, strongly influencing the fluidization and reaction conversion of the whole system, are of great research significance. In this work, the bubble behaviors of Geldart B particle in a pseudo two-dimensional (2D) pressurized fluidized bed were experimentally studied based on digital image analysis technique. The effects of pressure and fluidization gas velocity on the general bubble behaviors (i.e., size, shape and spatial distribution) and the dynamic characteristics, such as the time-evolution of voidage distribution and local flow regimes, were comprehensively investigated. Results show that increasing pressure reduces the stability of bubbles and facilitates gas passing through the emulsion phase, resulting in the “smoother” fluidization state with smaller bubbles and declined bubble fraction and standard deviation. The equivalent bubble diameter and bubble aspect ratio increase with the increasing gas velocity while decrease as pressure rises. The elevated pressure reduces bubbles extension in the vertical direction, prohibits the “short pass” of fluidization gas in large oblong bubbles/slugs and benefits the gas–solid interaction. The flow regimes variation with gas velocity is affected by the elevated pressure, and demonstrates different features in different local positions of the bed.  相似文献   

15.
The effects of co-current flows on a rising Taylor bubble are systematically investigated by a front tracking method coupled with a finite difference scheme based on a projection approach. Both the upward (the co-current flows the same direction as the buoyancy force) and the downward (the co-current moves in the opposite direction of the buoyancy force) co-currents are examined. It is found that the upward co-current tends to elongate the bubble, while the downward co-current makes the bubble fatter and shorter. For large Nf (the inverse viscosity number), the upward co-current also elongates the skirted tail and makes the tail oscillate, while the downward co-current shortens the tail and even changes a dimpled bottom to a round shape. The upward co-current promotes the separation at the tail, while the downward co-current suppresses the separation. The terminal velocity of the Taylor bubble rising in a moving flow is a linear combination of the mean velocity (UC) of the co-current and the terminal velocity (U0) of the bubble rising in the stagnant liquid, and the constant is around 2 which agrees with the literature. The wake length is linearly proportional to the velocity ratio (UC/U0). The co-currents affect the distribution of the wall shear stresses near the bubble, but not the maximum.  相似文献   

16.
The differential pressure between the entrance and throat of a Venturi will fluctuate if the liquid flowing through the Venturi contains bubbles. This paper reports computations of the pressure fluctuation due to the passage of a single bubble. The liquid is assumed inviscid and its velocity, assumed irrotational, is computed by means of a boundary integral technique. The liquid velocity at the entrance to the Venturi is assumed constant and uniform across the pipe, as is the pressure at the outlet. The bubble is initially far upstream of the Venturi and moves with velocity equal to that of the liquid. Buoyancy is neglected. If the bubble is sufficiently small that interactions with the Venturi walls may be neglected, a simple one-dimensional model for the bubble velocity is in good agreement with the full boundary integral computations. The differential pressure (taken to be positive) decreases when the bubble enters the converging section of the Venturi, and then increases to a value higher than for liquid alone as the bubble passes the pressure measurement position within the throat. The changes can be estimated using the one-dimensional model, if the bubble is small. The bubble is initially spherical (due to surface tension) but is perturbed by the low pressure within the Venturi throat. In the absence of viscosity, the bubble oscillates after leaving the Venturi. The quadrupole oscillations of the bubble are similar in frequency to those of a bubble in unbounded fluid; the frequency of the monopole oscillations is modified by the presence of the pipe walls. Numerical results for the frequency of monopole oscillations of a bubble in a uniform tube of finite length are in good agreement with analytic predictions, as is the computed drift of the oscillating bubble.  相似文献   

17.
利用电场控制气泡形态及运动,强化气液相间传热传质是电流体动力学的重要研究内容之一. 然而目前多数研究集中在非电场下的气泡动力学上,对于电场下的气泡行为特性及电场的作用机制仍需开展深入研究. 本研究对电场作用下单个气泡在流体中上升过程的动力学行为进行了数值模拟研究. 在建立二维模型的基础上求解电场方程与Navier-Stokes方程,并采用水平集方法捕捉了上升气泡的位置及形状. 模拟结果的准确性与有效性通过与前人实验和数值结果进行对比得到了验证. 通过改变雷诺数、邦德数和电邦德数等不同参数研究了电场下液体黏度、表面张力和电场力对气泡运动变形的影响. 计算结果表明,电场对气泡的动态特性有显著影响. 非电场情况下液体黏度和表面张力较大时气泡基本维持球状,反之气泡发生变形并逐步达到稳定状态. 此外,电场作用使气泡在初始上升阶段发生剧烈形变,随着不断上升,气泡形变程度不断减小,且气泡的上升速度和长径比均出现振荡. 垂直电场使气泡的上升速度有较大的提高,且随着电邦德数的增大,难以达到相对稳定的状态.   相似文献   

18.
19.
The characteristics of unsteady incompressible fluid flow around a gas or vapor bubble compressed to a finite size are theoretically investigated. The velocity on the bubble boundary, the integral flow-rate and kinetic energy, and the form of the pressure distribution in the fluid are analyzed. Certain general qualitative regularities independent of viscosity, surface tension, and the intensity of the heat and mass transfer processes are revealed. The general results obtained are illustrated and specified with reference to a simplified polytropic model.  相似文献   

20.
Time-resolved surface pressure measurements are used to experimentally investigate characteristics of separation and transition over a NACA 0018 airfoil for the relatively wide range of chord Reynolds numbers from 50,000 to 250,000 and angles of attack from 0° to 21°. The results provide a comprehensive data set of characteristic parameters for separated shear layer development and reveal important dependencies of these quantities on flow conditions. Mean surface pressure measurements are used to explore the variation in separation bubble position, edge velocity in the separated shear layer, and lift coefficients with angle of attack and Reynolds number. Consistent with previous studies, the separation bubble is found to move upstream and decrease in length as the Reynolds number and angle of attack increase. Above a certain angle of attack, the proximity of the separation bubble to the location of the suction peak results in a reduced lift slope compared to that observed at lower angles. Simultaneous measurements of the time-varying component of surface pressure at various spatial locations on the model are used to estimate the frequency of shear layer instability, maximum root-mean-square (RMS) surface pressure, spatial amplification rates of RMS surface pressure, and convection speeds of the pressure fluctuations in the separation bubble. A power-law correlation between the shear layer instability frequency and Reynolds number is shown to provide an order of magnitude estimate of the central frequency of disturbance amplification for various airfoil geometries at low Reynolds numbers. Maximum RMS surface pressures are found to agree with values measured in separation bubbles over geometries other than airfoils, when normalized by the dynamic pressure based on edge velocity. Spatial amplification rates in the separation bubble increase with both Reynolds number and angle of attack, causing the accompanying decrease in separation bubble length. Values of the convection speed of pressure fluctuations in the separated shear layer are measured to be between 35 and 50% of the edge velocity, consistent with predictions of linear stability theory for separated shear layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号