首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
X-ray photoelectron diffraction (PD) based on a forward scattering approach (FS-PD) has been used to study the growth mode of the first few Ni monolayers deposited on the Pt(111) surface, with a particular attention to the initial stages of epitaxy, i.e. the formation of the first atomic layer. Strong evidences for a layer-by-layer (or Frank-Van der Merwe) growth mode are reported, substantiated also by theoretical simulations carried out with the single scattering cluster-spherical wave (SSC-SW) framework. The first Ni monolayer grows strained in-plane to match the substrate pseudomorphically even if there is a 10% mismatch between the lattice parameters of Ni and Pt. The multilayer (up at least to six monolayers) maintains the horizontal strain and consequently shows a vertical spacing contraction (tetragonal distorsion). It retains the overall threefold symmetry and azimuthal orientation of the substrate, indicative of a single-domain epitaxial fcc stacking. There is also some evidence (even if it is not conclusive) for the fact that the Ni atoms of the first monolayer occupy hcp sites of the substrate surface.  相似文献   

2.
The growth and structure of Co ultra-thin films on Pd(111) and Cr on Co/Pd(111) have been analyzed by grazing incidence X-ray diffraction and low energy electron diffraction. It is shown that the in-plane lattice constant of the epitaxial Co film depends on the growth temperature. Although the strain decreases as a function of the Co film thickness, it persists for 20 monolayer (ML) films or even thicker. When Cr is deposited at room temperature on a strained Co film (10 to 20 ML thick) a Kurdjumov–Sachs epitaxial relationship is observed, whereas when Cr is deposited on a Co(0001) single-crystal or on a very thick Co film on Pd(111), a Nishyama–Wassermann orientation is obtained.  相似文献   

3.
H.Y. Ho 《Surface science》2006,600(5):1093-1098
Low-energy electron diffraction (LEED) and Auger electron spectroscopy (AES) were used to study the growth and the structural evolution of Ni/Co/Pt(1 1 1) following high-temperature annealing. From the oscillation of the specular beam of the LEED and Auger uptake curve, we concluded that the growth mode of thin Ni films on 1 ML Co/Pt(1 1 1) is at least 2 ML layer-by-layer growth before three-dimensional island growth begins. The alloy formation of Ni/1 ML Co/Pt(1 1 1) was analyzed by AES. The temperature for the intermixing of Ni and Co layers in the upper interface without diffusing into the bulk of Pt is independent of the thickness of Ni when a Co buffer is one atomic monolayer. After the temperature was increased, formations of Ni-Co-Pt alloy, Ni-Pt alloy and Co-Pt alloy were observed. The temperature required for the Ni-Co intermixing layer to diffuse into Pt bulk increases with the thickness of Ni. The interlayer distance as a function of annealing temperature for 1 ML Ni/1 ML Co/Pt(1 1 1) was calculated from the I-V LEED. The evolution of LEED patterns was also observed at different annealing temperatures.  相似文献   

4.
The hysteresis loops, of Co films with thicknesses ranging from 12- to 80-monolayer-equivalent (MLE) coverages grown by thermal evaporation on a Cu-covered Si(111) surface, were measured in situ by the surface magneto-optic Kerr effect (SMOKE) technique. The hysteresis loops were measured as a function of Co coverage under an external sinusoidal magnetic field at fixed driving frequency. The coercivity Hc of the Co film versus thickness t followed a power law tn with n=0.4±0.1 between 12 and 44 MLE, and stabilized after 44 MLE, up to the 80 MLE studied. The surface morphology of the 80-MLE Co film was imaged ex situ by atomic force microscopy (AFM) and scanning tunneling microscopy (STM), revealing cauliflower-like islands that were rough both in the short and long range. Analysis of the height–height correlation function for the largest image gave measurements of the effective roughness exponent (0.8), the vertical interface width w(2500 Å), and the lateral correlation length ξ(10 000 Å). We suggest that the coercivity changed in part due to changes in roughness of the Co films, deposited on a rough substrate; the spatial roughness would create an additional surface anisotropy, contributing to a fluctuation in the domain wall energy, resulting in a roughness-dependent coercivity.  相似文献   

5.
We demonstrate the growth of nearly ideal Mn/Ag(001) and inverted two-dimensional Ag/Mn/Ag(001) monolayer structures with a good degree of perfection by photoelectron diffraction and valence-band photoemission. A flat, ordered monolayer on Ag(001) stable up to 130 K is obtained by deposition of 0.9 monolayers at 80 K. An inverted subsurface or sandwich monolayer stable up to 330 K is achieved by further deposition of 1 ML Ag at 80 K and subsequent annealing at room temperature. There is evidence that these structures continue the Ag fcc lattice with a Mn atomic volume as large as that of Ag. In both structures, the Mn 3d states exhibit a very similar magnetic splitting which indicates a local moment of about 4μB. Low-energy electron diffraction provides evidence that the bare monolayer adopts a c(2×2) antiferromagnetic arrangement while the Ag-coated monolayer shows no similar superstructure, which suggests that it might be ferromagnetically ordered.  相似文献   

6.
An epitaxial Ge film was grown on a Si (001) substrate via a two-step process through the molecular beam epitaxy technique. The strain status of non-annealed and annealed epitaxial Ge films was determined by X-ray diffraction, Raman spectroscopy, and a combination of high-resolution transmission electron microscopy and geometric phase analysis. Results showed that the strain in non-annealed and annealed epitaxial Ge films is nonhomogeneous from the Ge/Si interface to the Ge film surface. The strain parallel to the interface in the non-annealed epitaxial Ge film is compressive; this strain reaches a minimum near the surface and a maximum at the interface. By contrast, the strain parallel to the interface in the annealed epitaxial Ge film is tensile; this strain reaches a minimum at the interface and a maximum near the surface.  相似文献   

7.
Adsorption probabilities for neopentane on Pt(111) were measured directly using supersonic molecular-beam techniques at coverages ranging from zero to monolayer saturation, incident translational energies between 18 and 110 kJ mol−1 and incident angles between 0° and 60° at a surface temperature of 105 K. The adsorption probability was found to increase with coverage up to near monolayer saturation at all incident translational energies and incident angles. The coverage dependence of the adsorption probability predicted by a modified Kisliuk model with enhanced trapping into the second layer exhibits good quantitative agreement with the experimental values. The angular dependence of the adsorption probability decreases with increasing coverage, suggesting that the effective corrugation of the gas–surface interaction potential increases with the adsorbate coverage. The initial adsorption probability into the second layer onto the covered surface decreases from 0.95 to 0.75 with increasing energy over the energy range studied, and exhibits total energy scaling. A comparison with second-layer trapping data of simpler molecules onto covered Pt(111) indicates that the structural complexity of adsorbed neopentane molecules facilitates collisional energy transfer during adsorption.  相似文献   

8.
The effects on the X-ray photoelectron diffraction intensities from the substrate produced by epitaxial NiO(0 0 1) films of various thickness deposited on Ag(0 0 1) were investigated. The variations in the Ag XPD curves induced by the NiO films can be explained in terms of multiple scattering of the electrons emitted by the substrate atoms along the close-packed rows of the overlayer. Intensity minima in the XPD curves from the substrate in correspondence to intensity maxima in the XPD curves from the overlayer are observed when the thin film is commensurate with the substrate. For films of suitable thickness, the analysis of XPD curves from the substrate allows one to get information about the structure of the film and of the film–substrate interface.  相似文献   

9.
Influences of oxygen exposure on the magnetic properties of Co/Ge(1 1 1) ultrathin films have been investigated by surface magneto-optic Kerr effect technique. As the oxygen exposure increases on Co/Ge(1 1 1) films, their magnetic properties could be modified. As an example for 15 ML Co/Ge(1 1 1) films, the coercivity increases from 730 to 920 Oe and the remanence Kerr intensity is reduced for 500 Langmuir (L) of oxygen exposure. Corresponding compositions analyzed by Auger electron spectroscopy measurement shows that the amount of oxygen on the surface layers increases with increasing the oxygen exposure time. Oxygen distributes on the topmost layers of the film. The adsorbed oxygen influences the electronic density of states of Co and results in the changes of the magnetic properties. Besides, the appearance of O/Co/Ge interface could modify the stress anisotropy, and as a result the coercivity of ultrathin Co/Ge(1 1 1) film is enhanced.  相似文献   

10.
E. Sibert  F. Maroun 《Surface science》2004,572(1):115-125
The electrodeposition of Au on Pt(1 1 1) from electrolytes containing μM concentrations of was studied by in situ scanning tunneling microscopy. Under these conditions the Au flux is limited by diffusion in the electrolyte over a wide potential range, which allows to assess the effect of the electrochemical environment on the growth kinetics. Similar to gas phase metal deposition Au film growth proceeds via nucleation and lateral growth of Au monolayer islands, with the saturation island density strongly depending on the deposition potential and on the anion species in the electrolyte. For deposition in H2SO4 solution the saturation island density continuously increases with increasing potential between −0.2 and 0.5 V (SCE), whereas in Cl-containing H2SO4 it first decreases and then increases again. Following nucleation and growth theories this behavior can be attributed to potential-induced changes of the Au surface mobility, caused by changes in the density and structure of coadsorbed sulfate/bisulfate and chloride adlayers. Under conditions of high Au surface mobility multilayer growth proceeds via a typical Stranski-Krastanov growth mode, with layer-by-layer growth of a pseudomorphic Au film up to 2 ML and 3D growth of structurally relaxed islands at higher coverage, indicating thermodynamic control under these conditions.  相似文献   

11.
Core level shift scanned-energy mode photoelectron diffraction using the two distinct components of the C 1s emission has been used to determine the structure of the Pt(1 1 1)c(√3 × 5)rect.-CO phase formed by 0.6 ML of adsorbed CO. The results confirm earlier assignments of these components to CO in atop and bridging sites, further confirm that the best structural model involves a 2:1 occupation ratio of these two sites, and provides quantitative structural parameter values. In particular the Pt-C chemisorption bondlengths for the atop and bridging sites are, respectively, 1.86 ± 0.02 Å and 2.02 ± 0.04 Å. These values are closely similar to those found in the 0.5 ML coverage c(4 × 2) phase, involving an atop:bridge occupation ratio of 1:1, obtained in earlier quantitative low energy electron diffraction studies. The results also indicate a clear tilt of the molecular axis of atop CO species in this compression phase, consistent with the finding of an earlier electron-stimulated desorption ion angular distribution investigation.  相似文献   

12.
The structural and morphological changes of a 1.1 monolayer (ML) Pt deposit on W(1 1 1) have been investigated in situ, in ultra-high vacuum, as a function of the annealing temperature from 700 to 1340 K, by a combination of grazing incidence X-ray diffraction and grazing incidence small-angle X-ray scattering. Before annealing, the thin Pt layer is two-dimensional and lattice-matched to the W(1 1 1) surface. The faceting of Pt/W(1 1 1) towards nanoscale three-sided pyramids with {2 1 1} facets has been detected from 715 K. At this stage, the pyramids, which have a 5-nm average lateral size, cover nearly perfectly the surface. At higher temperatures, they increase in size. The role of the edge energy in the nanofaceting process is discussed. In addition, 4 MLs Co are deposited at room temperature on the smallest Pt/W pyramids. The obtained three-dimensional Co islands are correlated with the Pt/W nanopyramids and Co is relaxed on Pt/W. At approximately 800 K, a CoPt alloy is formed and becomes better ordered as the annealing temperature increases. At 1100 K, both defaceting and phase separation begin; the CoPt alloy segregates on the W(1 1 1) flat surface, while Co forms an epitaxial layer on the {2 1 1} facets. In addition, in the temperature range of 1100-1200 K, a great majority of {2 1 1} large facets coexist with some {1 1 0} small facets. Finally, the surface becomes flat again at 1250 K.  相似文献   

13.
We report the influence of crystal orientation on the magnetic properties of CoFe2O4 (CFO) thin films grown on single crystal Si (1 0 0) and c-cut sapphire (Al2O3) (0 0 0 1) substrates using pulsed laser deposition technique. The thickness was varied from 200 to 50 nm for CFO films grown on Si substrates, while it was fixed at 200 nm for CFO films grown on Al2O3 substrates. We observed that the 200 and 100 nm thick CFO-Si films grew in both (1 1 1) and (3 1 1) directions and displayed out-of-plane anisotropy, whereas the 50 nm thick CFO-Si film showed only an (1 1 1) orientation and an in-plane anisotropy. The 200 nm thick CFO film grown on an Al2O3 substrate was also found to show a complete (1 1 1) orientation and a strong in-plane anisotropy. These observations pointed to a definite relation between the crystalline orientation and the observed magnetic anisotropy in the CFO thin films.  相似文献   

14.
Results of MD simulations of the structure of ultrathin films of Co on Cu(001) are presented. Growth conditions corresponding to vacuum evaporation as well as laser ablation are considered. The dynamics of the growth process and the structure of the as-deposited films are investigated as a function of the kinetic energy of adatoms. The effect of fast interdiffusion due to a high impact energy is observed. Tight-binding potentials in the second-moment approximation are used. Co–Cu interaction parameters are determined from ab-initio electronic structure calculations.  相似文献   

15.
The angle-resolved X-ray photoelectron spectra for 0.15 monolayers (ML) of sulfur, and 0.25 ML methyl thiolate formed at 100 K and annealed to 150 and 250 K, on Ni(111) are analyzed to determine the structures of these species. It is found that sulfur adsorbs on the face-centered cubic hollow site on Ni(111) with a S---Ni bond length of 2.20±0.02 Å. The thiolate species formed at 150 K has the C---S bond tilted at 35° to the surface normal with a C---S bond length of 1.85±0.02 Å and a S---Ni bond length similar to that for adsorbed sulfur (2.2 Å). The methyl group is tilted toward the bridge site and the thiolate appears to be adsorbed on the face-centered cubic site although there may also be adsorption in the hexagonal close packed site. The species formed at 250 K adsorbs on a reconstructed surface where the chemical shift of the S 2p core level indicates that it adsorbs at a four-fold site and the angle-resolved XPS data indicate that the C---S bond is oriented normal to the surface. The calculated angular variations in intensity are consistent with this interpretation but cannot distinguish between the various models proposed for the reconstructed surface.  相似文献   

16.
The adsorption and reaction of methylacetylene (H3CC≡CH) on Pt(111) and the p(2×2) and

surface alloys were investigated with temperature programmed desorption, Auger electron spectroscopy and low energy electron diffraction. Hydrogenation of methylacetylene to form propylene is the most favored reaction pathway on all three surfaces accounting for ca 20% of the adsorbed monolayer. Addition of Sn to the Pt(111) surface to form these two ordered surface alloys suppresses the decomposition of methylacetylene to surface carbon. The alloy surfaces also greatly increase the amount of reversibly adsorbed methylacetylene, from none on Pt(111) to 60% of the adsorbed layer on the

surface alloy. Methylacetylene reaction also leads to a small amount of desorption of benzene, along with butane, butene, isobutylene and ethylene. There is some difference in the yield of these other reaction products depending the Sn concentration, with the (2×2)-Sn/Pt(111) surface alloy having the highest selectivity for these. Despite previous experiments showing cyclotrimerization of acetylene to form benzene on the Pt–Sn surface alloys, the analogous reaction of methylacetylene on the alloy surfaces was not observed, that is, cyclotrimerization of methylacetylene to form trimethylbenzene. It is proposed that this and the high yield of propylene is due to facile dehydrogenation of methylacetylene because of the relatively weak H–CH2CCH bond compared to acetylene. The desorption of several C4 hydrocarbon products at low (<170 K) temperature indicates that some minor pathway involving C–C bond breaking is possible on these surfaces.  相似文献   

17.
A quantitative structure determination of a newly discovered (2×2) adsorption phase of acetylene chemisorbed on Pd{111} has been performed by scanned-energy mode photoelectron diffraction: this phase corresponds to the threshold coverage for the catalytic conversion of acetylene to benzene. The carbon atoms in the C2H2 molecule are located almost over bridge sites with a C–C bond length of 1.34+0.10 Å, the centre of the molecule being positioned almost over a hollow site. Of the two hollow sites the hcp site (directly above a second layer Pd atom) is favoured, particularly by a subset of the data most sensitive to this aspect of the structure, but the full analysis indicates that the fcc site (above a third layer Pd atom) cannot formally be excluded. The adsorption site adopted by acetylene in the higher coverage phase on Pd{111} is essentially identical. This is the dominant structure in the coverage regime which is catalytically active for the conversion of acetylene to benzene. The implications of these findings for acetylene coupling reactions over Pd{111} are discussed.  相似文献   

18.
Fibre-textured and epitaxial Nb-doped Pb(Zr0.53Ti0.47)O3 (PNZT) thin films were grown on the different substrates by a sol-gel process. The [1 0 0]- and [1 1 1]-fibre-textured polycrystalline PNZT films were obtained on platinized silicon substrates by introducing PbO and TiO2 seeding layers, while the [0 0 1]- and [1 1 1]-oriented epitaxial PNZT films were formed directly on Nb-doped SrTiO3 (Nb:STO) single-crystal substrates with (1 0 0) and (1 1 1) surfaces, respectively. The preferential orientation and phase structure of the fibre-textured and epitaxial PNZT films, as well as their influences on the electrical properties were investigated. Higher remnant polarization (Pr) and piezoelectric coefficient (d33) were obtained for the epitaxial PNZT films on Nb:STO substrates than that for the fibre-textured ones on platinized silicon substrates. For both fibre-textured and epitaxial cases, the PNZT films with [1 0 0]/[0 0 1] orientations show higher piezoelectric responses than [1 1 1]-oriented ones, whereas better ferroelectric properties can be obtained in the latter. The intrinsic and extrinsic contributions were discussed to explain the difference in electrical properties for differently oriented fibre-textured and epitaxial PNZT films on different substrates.  相似文献   

19.
VOx ultrathin epitaxial films (0.8x1.3) have been grown on Pt(1 1 1) by evaporating vanadium in a low and well-controlled water background (1×10−7 Pa). X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy and X-ray excited auger electron spectroscopy data strongly indicate that vanadium(II) in the predominant oxidation state. Angle-scanned photoelectron diffraction data are compatible with a single domain film, bearing a rock-salt VO structure and exposing the (1 1 1) plane. Such films evolve toward more oxidized species within hours, probably due to oxidation by residual water in the chamber.  相似文献   

20.
C. -H. Nien  T. E. Madey 《Surface science》1997,380(2-3):L527-L532
The faceting of Pd/W(111) surfaces has been studied using a Scanning tunneling microscope (STM). Three-sided pyramidal facets having {211} faces with dimensions ranging from 3 to 15 nm can be induced by ultrathin Pd films (≥ 1 monolayer), upon annealing to 700 K or higher. From atomic-resolution STM-images of these surfaces, we obtain direct confirmation of the {211} structure on individual facets of the 3-sided pyramids. In addition, the atomic structure of the facet edges indicates that edge energy may play a role in faceting. When the as-deposited coverage of Pd is greater than the critical value ( 1 monolayer) for inducing faceting, the extra Pd atoms diffuse to form 3-dimensional clusters, some with discernible crystalline structures, upon annealing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号