首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
State-to-state rotational energy transfer (RET) rate coefficients for NO (A 2Sigma+, v'=0, J=5.5, 11.5, 17.5) were measured for N2 and O2 at room temperature using a pump-probe method. The NO A 2Sigma+ state is prepared by 226 nm light and the RET is monitored by fluorescence from the D 2Sigma+ v'=0 state, following excitation by a time-delayed laser at approximately 1.1 microm. Additionally, total collisional removal and final state distributions were measured exciting in the Q1+P21 band head, to simulate an NO laser-induced fluorescence atmospheric monitoring scheme. Time-resolved modeling is used to understand relaxation mechanisms and predict relaxation times in ambient air. H2O at atmospherically relevant concentrations does not affect the degree of RET in ambient air.  相似文献   

2.
The 4th positive and Cameron band emissions from electronically excited CO have been observed for the first time in 248-nm pulsed laser photolysis of a trace amount of CHBr(3) vapor in an excess of O atoms. O atoms were produced by dissociation of N(2)O (or O(2)) in a cw-microwave discharge cavity in 2.0 Torr of He at 298 K. The CO emission intensity in these bands showed a quadratic dependence on the laser fluence employed. Temporal profiles of the CO(A) and other excited-state products that formed in the photoproduced precursor + O-atom reactions were measured by recording their time-resolved chemiluminescence in discrete vibronic bands. The CO 4th positive transition (A(1)Pi, v' = 0 --> X(1)Sigma(+), v' ' = 2) near 165.7 nm was monitored in this work to deduce the pseudo-first-order decay kinetics of the CO(A) chemiluminescence in the presence of various added substrates (CH(4), NO, N(2)O, H(2), and O(2)). From this, the second-order rate coefficient values were determined for reactions of these substrates with the photoproduced precursors. The measured reactivity trends suggest that the prominent precursors responsible for the CO(A) chemiluminescence are the methylidyne radicals, CH(X(2)Pi) and CH(a(4)Sigma(-)), whose production requires the absorption of at least 2 laser photons by the photolysis mixture. The O-atom reactions with brominated precursors (CBr, CHBr, and CBr(2)), which also form in the photolysis, are shown to play a minor role in the production of the CO(A or a) chemiluminescence. However, the CBr(2) + O-atom reaction was identified as a significant source for the 289.9-nm Br(2) chemiluminescence that was also observed in this work. The 282.2-nm OH and the 336.2-nm NH chemiluminescences were also monitored to deduce the kinetics of CH(X(2)Pi) and CH(a(4)Sigma(-)) reactions when excess O(2) and NO were present.  相似文献   

3.
Bergeat A  Calvo T  Caralp F  Fillion JH  Dorthe G  Loison JC 《Faraday discussions》2001,(119):67-77; discussion 121-43
The multichannel CH + O2 reaction was studied at room temperature, in a low-pressure fast-flow reactor. CH radical was obtained from the reaction of CHBr3 with potassium atoms. The overall rate constant was determined from the decay of CH with distance, O2 being introduced in excess. The result, after corrections for axial and radial diffusion, is k = (3.6 +/- 0.5) x 10(-11) cm3 molecule-1 s-1. The OH(A2 sigma +) chemiluminescence was observed, confirming the existence of the OH + CO channel. The vibrational population distribution of OH(A2 sigma +) is 32% in the v' = 1 level and 68% in the v' = 0 level (+/- 5%). The relative atomic concentrations were determined by resonance fluorescence in the vacuum ultraviolet. A ratio of 1.4 +/- 0.2 was found between the H atom density (H atoms being produced from the H + CO2 channel and from the HCO dissociation) and the O atom density (O + HCO). Ab initio calculations of the transition structures have been performed, associated with statistical estimations. The estimated branching ratios are: O + HCO, 20%; O + H + CO, 30%; H + CO2, 30%; and CO + OH, 20%.  相似文献   

4.
The oriented CO (a (3)Π, v' = 0, Ω = 1 and 2) beam has been prepared by using an electric hexapole and applied to the energy transfer reaction of CO (a (3)Π, v' = 0, Ω = 1 and 2) + NO (X (2)Π) → NO (A (2)Σ(+), B (2)Π) + CO (X (1)Σ(+)). The emission spectra of NO (A (2)Σ(+), B(2)Π) have been measured at three orientation configurations (C-end, O-end, random). The shape of the emission spectra (and/or the internal excitation of products) turns out to be insensitive to the molecular orientation. The vibrational distributions of NO (A (2)Σ(+), v' = 0-2) and NO (B (2)Π, v' = 0-2) are determined to be N(v'=0):N(v'=1):N(v'=2) = 1:0.40 ± 0.05:0.10 ± 0.05 and N(v'=0):N(v'=1):N(v'= 2) = 1:0.6 ± 0.1:0.7 ± 0.1, respectively, and the branching ratio γ/β [=NO (A (2)Σ(+))/NO (B (2)Π)] is estimated to be γ/β ~ 0.3 ± 0.1 by means of spectral simulation. These vibrational distributions of NO (A, B) can be essentially attributed to the product-pair correlations between CO (X, v″) and NO (A (2)Σ(+), v' = 0-2), NO (B (2)Π, v' = 0-2) due to energetic restriction under the vibrational distribution of CO (X, v″) produced from the vertical transition of CO (a (3)Π, v' = 0) → CO (X, v″) in the course of energy transfer. The steric opacity function has been determined at two wavelength regions: 220 < λ < 290 nm [NO (A → X) is dominant]; 320 < λ < 400 nm [NO (B → X) is dominant]. For both channels NO (A (2)Σ(+), B(2)Π), a significant CO (a (3)Π) alignment effect is recognized; the largest reactivity at the sideways direction with the small reactivity at the molecular axis direction is observed. These CO (a (3)Π) alignment effects can be essentially attributed to the steric asymmetry on two sets of molecular orbital overlap, [CO (2π) + NO (6σ (2π))] and [CO (5σ) + NO (1π (2π))]. All experimental observations support the electron exchange mechanism that is operative through the formation of a weakly bound complex OCNO.  相似文献   

5.
We report a combined experimental and theoretical investigation of the nonreactive quenching channel resulting from electronic quenching of OH A 2Sigma+ by molecular hydrogen. The experiments utilize a pump-probe scheme to determine the OH X 2Pi population distribution following collisional quenching in a pulsed supersonic expansion. The pump laser excites OH A 2Sigma+ (nu'=0, N'=0), which has a significantly reduced fluorescence lifetime due to quenching by H2. The probe laser monitors the OH X 2Pi (nu", N") population via laser-induced fluorescence on various A-X transitions under single collision conditions. The experiments reveal a high degree of rotational excitation (N") of the quenched OH X 2Pi products observed in nu"=1 and 2 as well as a pronounced propensity for quenching into the Pi(A') Lambda-doublet level. These experiments have been supplemented by extensive multireference, configuration-interaction calculations aimed at exploring the topology of the relevant potential energy surfaces. Electronic quenching of OH A 2Sigma+ by H2 proceeds through conical intersections between two potentials of A' reflection symmetry (in planar geometry) that correlate with the electronically excited A 2Sigma+ and ground X 2Pi states of OH. The conical intersections occur in high-symmetry geometries, in which the O side of OH points toward H2. Corroborating and extending earlier work of Hoffman and Yarkony [J. Chem. Phys. 113, 10091 (2000)], these calculations reveal a steep gradient away from the OH-H2 conical intersection as a function of both the OH orientation and interfragment distance. The former will give rise to a high degree of OH rotational excitation, as observed for the quenched OH X 2Pi products.  相似文献   

6.
The product state-resolved dynamics of the reactions H+H(2)O/D(2)O-->OH/OD((2)Pi(Omega);v',N',f )+H(2)/HD have been explored at center-of-mass collision energies around 1.2, 1.4, and 2.5 eV. The experiments employ pulsed laser photolysis coupled with polarized Doppler-resolved laser induced fluorescence detection of the OH/OD radical products. The populations in the OH spin-orbit states at a collision energy of 1.2 eV have been determined for the H+H(2)O reaction, and for low rotational levels they are shown to deviate from the statistical limit. For the H+D(2)O reaction at the highest collision energy studied the OD((2)Pi(3/2),v'=0,N'=1,A') angular distributions show scattering over a wide range of angles with a preference towards the forward direction. The kinetic energy release distributions obtained at 2.5 eV also indicate that the HD coproducts are born with significantly more internal excitation than at 1.4 eV. The OD((2)Pi(3/2),v'=0,N'=1,A') angular and kinetic energy release distributions are almost identical to those of their spin-orbit excited OD((2)Pi(1/2),v'=0,N'=1,A') counterpart. The data are compared with previous experimental measurements at similar collision energies, and with the results of previously published quasiclassical trajectory and quantum mechanical calculations employing the most recently developed potential energy surface. Product OH/OD spin-orbit effects in the reaction are discussed with reference to simple models.  相似文献   

7.
The product branching ratios for NO+(X 1Sigma+) and NO+(a 3Sigma+) produced from the reaction of N+ with O2 have been measured at 298 and 500 K in a selected ion flow tube. Approximately 0.5% of the total products are in NO+(a) at both temperatures, despite the fact that the reaction to form NO+(a) is 0.3 eV exothermic. High-level ab initio calculations of the potential energy surfaces for the N+ + O2 reaction show that the reaction from N+(3P) + O2(3Sigma(g)) reactants starts with an efficient early stage charge transfer to the N(2D) + O2+(X 2Pi) channel, which gives rise to the O2+(X 2Pi) product and, at the same time, serves as the starting point for all of the reaction channels leading to NO+ and O+ products. Pathways to produce NO+(a 3Sigma+) are found to be less favorable than pathways leading to the major product NO+(X 1Sigma+). Production of N(2D) has implications for the concentration of NO in the mesosphere.  相似文献   

8.
A pump-probe laser-induced fluorescence technique has been used to examine the nascent OH X (2)Pi product state distribution arising from non-reactive quenching of electronically excited OH A (2)Sigma(+) by molecular hydrogen and deuterium under single-collision conditions. The OH X (2)Pi products were detected in v'=0, 1 and 2; the distribution peaks in v'=0 and decreases monotonically with increasing vibrational excitation. In all vibrational levels probed, the OH X (2)Pi products are found to be highly rotationally excited, the distribution peaking at N'=15 when H(2) was used as the collision partner and N'=17 for D(2). A marked propensity for production of Pi(A') Lambda-doublet levels was observed, while both OH X (2)Pi spin-orbit manifolds were equally populated. These observations are interpreted as dynamical signatures of the nonadiabatic passage of the OH + H(2)/D(2) system through the seams of conical intersection that couple the excited state (2 (2)A') and ground state (1 (2)A') surfaces.  相似文献   

9.
Quantum scattering calculations are reported for the O(3P)+H2(v=0,1) reaction using chemically accurate potential energy surfaces of 3A' and 3A" symmetry. We present state-to-state reaction cross sections and rate coefficients as well as thermal rate coefficients for the title reaction using accurate quantum calculations. Our calculations yield reaction cross sections that are in quantitative accord with results of recent crossed molecular beam experiments. Comparisons with results obtained using the J-shifting calculations show that the J-shifting approximation is quite reliable for this system. Thermal rate coefficients from the exact calculations and the J-shifting approximation agree remarkably well with experimental results. Our calculations also reproduce the markedly different OH(v'=0)/OH(v'=1) branching in O(3P)+H2(v=1) reaction, observed in experiments that use different O(3P) atom sources. In particular, we show that the branching ratio is a strong function of the kinetic energy of the O(3P) atom.  相似文献   

10.
Time-resolved FTIR has been used to study the emission from the NO X 2Pi (v) products formed both by fluorescence and by collisional self quenching of the NO A 2Sigma+ (v=0) state. Vibrational excitation has been observed in ground state NO with populations up to at least v=20. Under conditions where fluorescence is the dominant removal process the nascent distribution in ground state NO(v) was found to be determined by the relative magnitude of the emission coefficients. Collisional quenching by ground state NO populates higher vibrational levels in NO(v) than fluorescence. By comparing distributions acquired at different pressures and by using a surprisal analysis, a nascent distribution of NO(v=0-20) is estimated for collisional relaxation of NO A 2Sigma+ (v=0) by NO. This distribution was found to be slightly hotter than statistical (prior) and showed evidence of oscillations at specific vibrational levels. This work is one of the first to be published concerning the vibrational ground state products of the quenching of electronically excited molecules and the first to report emission over such a large number of vibrational levels.  相似文献   

11.
The sub-Doppler laser induced fluorescence spectra of numerous branch features in the B 2Sigma+ -X 2Sigma+(0,0) band of calcium monodeuteride were recorded field-free and in the presence of a static electric field of up to 7 kV/cm. The field-free spectra were analyzed to produce an improved set of fine structure parameters for the B 2Sigma+(v=0) state. The observed electric field induced splittings and shifts were analyzed to produce permanent electric dipole moments of 2.57(3) and 2.51(3) D for B 2Sigma+(v=0) and X 2Sigma+(v=0) states, respectively. The permanent electric dipole moment for the X 2Sigma+(v=0) state of CaH is estimated to be 2.53(3) D.  相似文献   

12.
Fluorescence excitation spectra produced through photoexcitation of N(2) using synchrotron radiation in the spectral region between 80 and 100 nm have been studied. Two broadband detectors were employed to simultaneously monitor fluorescence in the 115-320 nm and 300-700 nm regions, respectively. The peaks in the vacuum ultraviolet fluorescence excitation spectra are found to correspond to excitation of absorption transitions from the ground electronic state to the b (1)Pi(u), b(') (1)Sigma(u) (+), c(n) (1)Pi(u) (with n=4-8), c(n) (') (1)Sigma(u) (+) (with n=5-9), and c(4) (')(v('))(1)Sigma(u) (+) (with v(')=0-8) states of N(2). The relative fluorescence production cross sections for the observed peaks are determined. No fluorescence has been produced through excitation of the most dominating absorption features of the b-X transition except for the (1,0), (5,0), (6,0), and (7,0) bands, in excellent agreement with recent lifetime measurements and theoretical calculations. Fluorescence peaks, which correlate with the long vibrational progressions of the c(4) (') (1)Sigma(u) (+) (with v(')=0-8) and the b(') (1)Sigma(u) (+) (with v(') up to 19), have been observed. The present results provide important information for further unraveling of complicated and intriguing interactions among the excited electronic states of N(2). Furthermore, solar photon excitation of N(2) leading to the production of c(4) (')(0) may provide useful data required for evaluating and analyzing dayglow models relevant to the interpretation of c(4) (')(0) in the atmospheres of Earth, Jupiter, Saturn, Titan, and Triton.  相似文献   

13.
A pure and highly intense state-selected pulsed supersonic CH(X (2)Pi) radical beam source was developed by use of the C((1)D)+H(2) reaction with the combination of the state selection and purification by an electrostatic hexapole field. Under the beam-cell condition, the elementary reactions of CH+NO and CH+O(2) were studied by using this state-selected CH beam. NH(A (3)Pi) [and NCO(A (2)Sigma(+))] formations and OH(A (2)Sigma(+)) formation were directly identified in the elementary reaction of CH+NO and CH+O(2), respectively. For the CH+NO reaction, the relative branching ratio sigma(NCO*)sigma(NH) of NCO(A (2)Sigma(+)) formation to NH(A (3)Pi) formation was determined to be 0.35+/-0.15. The state-selected reaction cross sections were determined for each rotational state of CH. In the CH+NO reaction, a remarkable rotational state dependence of the reactive cross section was revealed, while the CH+O(2) reaction showed little rotational state dependence.  相似文献   

14.
Dy(3+)-doped fluorophosphate glasses with composition (in mol%) (56-x/2)P(2)O(5)+17K(2)O+(15-x/2)BaO+8Al(2)O(3) + 4AlF(3)+ xDy(2)O(3), x=0.01, 0.05, 0.1, 1.0 and 2.0, have been prepared by melt quenching technique. The luminescence spectra and lifetimes of (4)F(9/2) level of Dy(3+) ions in these glasses have been measured using the 457.9 nm line of argon ion laser as an excitation source. The free-ion calculation and Judd-Ofelt analysis have been performed. The room temperature emission spectra corresponding to (4)F(9/2)-->(6)H(J) (J=7/2, 9/2, 11/2, 13/2 and 15/2) transitions of Dy(3+) ions were measured. The fluorescence decay from (4)F(9/2) level have been measured by monitoring the intense (4)F(9/2)-->(6)H(13/2) transition. The lifetime of the decay is obtained by taking the first e-folding times of the decay curves and is found to decrease with increase in Dy(3+) ions concentration due to concentration quenching. The decay curves are found to be perfectly single exponential for samples with low Dy(3+) ion concentration. The non-exponential decay curves observed for higher concentrations are well fitted to the Inokuti-Hirayama model for S=6, which indicates that the energy transfer between the donor and acceptor is of dipole-dipole nature. The energy transfer parameter and donor to acceptor interaction increases with Dy(3+) ions concentration due to increase of energy transfer from Dy(3+) (donor) to unexcited Dy(3+) (acceptor) ions.  相似文献   

15.
Effects of solvent water on the photophysical properties of a series of meta- and para-substituted anilines have been investigated by means of time-resolved fluorescence, transient absorption, and photoacoustic measurements. Some aniline derivatives exhibit extremely short fluorescence lifetime (tau(f)) and small quantum yield (Phi(f)) in water (e.g., tau(f) = 45 ps and Phi(f) = 0.0019 for m-cyanoaniline (m-ANCN) in H(2)O), which is in marked contrast with their much larger values in nonaqueous solvents (tau(f) = 7.3 ns and Phi(f) = 0.14 for m-ANCN in acetonitrile). Photoacoustic and transient absorption measurements show that the remarkable fluorescence quenching of m-ANCN in water is attributed almost exclusively to fast internal conversion. The lifetime measurements of m-ANCN in H(2)O/acetonitrile binary solvent mixtures reveal that the quenching is related to variation of hydrogen-bonding interactions between the amino group and water molecules and the conformational change of the amino group upon electronic excitation. Similar fluorescence quenching due to solvent water is also found for N-alkylated m-ANCNs. The drastic differences in the fluorescence intensity and lifetime of m-ANCNs under hydrophobic and hydrophilic environments and also the large solvent polarity dependence of the fluorescence band position suggest the possibility that they can be utilized as fluorescent probes for investigating the microenvironment of biological systems. In suspensions of human serum albumin (HSA) in water, remarkable enhancement of the fluorescence intensity and lifetime is observed for m-ANCN and its N-alkylated derivatives, demonstrating that m-ANCNs can be a candidate for novel fluorescent probe with small molecular size.  相似文献   

16.
OH/OD product state distributions arising from the reaction of gas-phase O(3P) atoms at the surface of the liquid hydrocarbon squalane C30H62/C30D62 have been measured. The O(3P) atoms were generated by 355 nm laser photolysis of NO2 at a low pressure above the continually refreshed liquid. It has been shown unambiguously that the hydroxyl radicals detected by laser-induced fluorescence originate from the squalane surface. The gas-phase OH/OD rotational populations are found to be partially sensitive to the liquid temperature, but do not adapt to it completely. In addition, rotational temperatures for OH/OD(v'=1) are consistently colder (by 34+/-5 K) than those for OH/OD(v'=0). This is reminiscent of, but less pronounced than, a similar effect in the well-studied homogeneous gas-phase reaction of O(3P) with smaller hydrocarbons. We conclude that the rotational distributions are composed of two different components. One originates from a direct abstraction mechanism with product characteristics similar to those in the gas phase. The other is a trapping-desorption process yielding a thermal, Boltzmann-like distribution close to the surface temperature. This conclusion is consistent with that reached previously from independent measurements of OH product velocity distributions in complementary molecular-beam scattering experiments. It is further supported by the temporal profiles of OH/OD laser-induced fluorescence signals as a function of distance from the surface observed in the current experiments. The vibrational branching ratios for (v'=1)/(v'=0) for OH and OD have been found to be (0.07+/-0.02) and (0.30+/-0.10), respectively. The detection of vibrationally excited hydroxyl radicals suggests that secondary and/or tertiary hydrogen atoms may be accessible to the attacking oxygen atoms.  相似文献   

17.
Collisionless lifetimes for Bi2 A(0u+), v'=20-39, J'X) spectrum required both traditional lifetime measurements and synthetic spectrum fits to laser excitation spectra to determine the full range of observed rates. A single, repulsive potential responsible for the observed A-state predissociation could not be identified to adequately describe the vibrational dependence of the predissociation rates.  相似文献   

18.
19.
New high-resolution visible emission spectra of the MgH molecule have been recorded with high signal-to-noise ratios using a Fourier transform spectrometer. Many bands of the A 2Pi-->X 2Sigma+ and B' 2Sigma+-->X 2Sigma+ electronic transitions of 24MgH were analyzed; the new data span the v' = 0-3 levels of the A 2Pi and B'2Sigma+ excited states and the v'=0-11 levels of the X 2Sigma+ ground electronic state. The vibration-rotation energy levels of the perturbed A 2Pi and B' 2Sigma+ states were fitted as individual term values, while those of the X 2Sigma+ ground state were fitted using the direct-potential-fit approach. A new analytic potential energy function that imposes the theoretically correct attractive potential at long-range, and a radial Hamiltonian that includes the spin-rotation interaction were employed, and a significantly improved value for the ground state dissociation energy of MgH was obtained. The v'=11 level of the X 2Sigma+ ground electronic state was found to be the highest bound vibrational level of 24MgH, lying only about 13 cm(-1) below the dissociation asymptote. The equilibrium dissociation energy for the X 2Sigma+ ground state of 24MgH has been determined to be De=11104.7+/-0.5 cm(-1) (1.37681+/-0.00006 eV), whereas the zero-point energy (v'=0) is 739.11+/-0.01 cm(-1). The zero-point dissociation energy is therefore D0=10365.6+/-0.5 cm(-1) (1.28517+/-0.00006 eV). The uncertainty in the new experimental dissociation energy of MgH is more than 2 orders of magnitude smaller than that for the best value available in the literature. MgH is now the only hydride molecule other than H2 itself for which all bound vibrational levels of the ground electronic state are observed experimentally and for which the dissociation energy is determined with subwavenumber accuracy.  相似文献   

20.
The deamidation and dehydration products of Na+(L), where L = asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and glutamic acid (Glu), are examined in detail utilizing collision-induced dissociation (CID) with Xe in a guided ion beam tandem mass spectrometer (GIBMS). Results establish that the Na+(L) complexes decompose upon formation in our dc discharge/flow tube ion source to form a bis-ligand complex, Na+(L-HX)(HX), composed of a sodium cation, the (L-HX) decomposition product, and HX, where HX = NH3 for the amides and H2O for the acids. Analysis of the energy-dependent CID cross sections for the Na+(L-HX)(HX) complexes provides unambiguous identification of the (L-HX) fragmentation products as 3-amino succinic anhydride (a-SA) for Asx and oxo-proline (O-Pro) for Glx. Furthermore, these experiments establish the 0 K sodium cation affinities for these five-membered ring decomposition products and the H2O and NH3 binding affinities of the Na+(a-SA) and Na+(O-Pro) complexes after accounting for unimolecular decay rates, the internal energy of reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations are determined for a number of geometric conformations of all reaction species as well as a number of candidate species for (L-HX) at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both the experimental work and quantum chemical calculations allows for a complete characterization of the products of deamidation and dehydration of Asx and Glx, as well as the details of Na+, H2O, and NH3 binding to the decomposition species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号