首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Development of a chemiluminescence ethanol sensor based on nanosized ZrO2   总被引:1,自引:0,他引:1  
Zhang Z  Zhang C  Zhang X 《The Analyst》2002,127(6):792-796
Chemiluminescence was observed on introducing ethanol vapor to the surface of nanosized ZrO2 and this effect could be utilized to design a sensor for trace ethanol detection. The term cataluminescence (CTL) was used to describe this kind of chemiluminescence because the luminescence is generated by the catalytic oxidation of organic vapors on the solid surface. The proposed sensor showed high sensitivity to ethanol at 195 degrees C. The stability of the gas sensor was demonstrated by continuous reaction with ethanol for 100 h. Quantitative analysis was performed at an optimum wavelength of 460 +/- 10 nm. The chemiluminescence intensity was proportional to the concentration of ethanol from 1.6 to 160 microg ml(-1), with a detection limit of 0.6 microg ml(-1) (signal-to-noise ratio = 3:1). The mechanism of the chemiluminescence reaction is discussed and the results show that one of the possible luminescent intermediates is acetaldehyde. The chemiluminescence on nanosized ZrO2 observed in this work demonstrates the possibility of developing new nanomaterials for low-temperature cataluminescence detection.  相似文献   

2.
Au nanoparticles (AuNPs) were electrodeposited at the highly ordered anatase TiO2 nanotube array (TiO2NA) electrode to prepare the AuNP-TiO2NA sensor. The as-prepared sensor can be used for the determination of chemical oxygen demand (COD) in real samples.  相似文献   

3.
Nb2O5-carbon nanocomposite is synthesized through a facile one-step hydrothermal reaction from sucrose as the carbon source, and studied as an anode material for high-performance lithium ion battery. The structural characterizations reveal that the nanocomposite possesses a core-shell structure with a thin layer of carbon shell homogeneously coated on the Nb2O5 nanocrystals. Such a unique structure enables the composite electrode with a long cycle life by preventing the Nb2O5 from volume change and pulverization during the charge-discharge process. In addition, the carbon shell efficiently improves the rate capability. Even at a current density of 500 mA·g?1, the composite electrode still exhibits a specific capacity of ~100 mAh·g?1. These results suggest the possibility to utilize the Nb2O5-carbon core-shell composite as a high performance anode material in the practical application of lithium ion battery.  相似文献   

4.
Conversion of methane into liquid alcohol such as ethanol at low temperature in a straight, selective and low energy consumption process remains a topic of intense scientific research but a great challenge. In this work, Cu Fe2O4/CNT composite is successfully synthesized via a facile co-reduction method and used as catalysts to selectively oxidize methane. At a low temperature of 150 °C, methane is directly converted to ethanol in a single process on the as-prepared CuFe  相似文献   

5.
Reactions of 1,3-disubstituted 5-aminopyrazole-4-carbonitrile derivatives 3a-o with dimethyl acetylenedicarboxylate in the presence of potassium carbonate in dimethyl sulfoxide gave the corresponding dimethyl 1,3-disubstituted pyrazolo[3,4-b]pyridine-5,6-dicarboxylates 4a-o which were allowed to react with excess hydrazine hydrate under ethanol refluxing conditions followed by heating at 250-300° to give 1,3-disubstituted 4-amino-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 7a-s in good yields. Similarly, 1,3-disubstituted 4-hydroxy-1H-pyrazolo[4′3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-diones 10a-c were obtained from alkyl 1,3-disubstituted 5-aminopyrazole-4-carboxylates 8a-c . These tricyclic pyridazine derivatives were alternatively synthesized from 4-hydroxypyrrolo[3,4-e]pyrazolo[3,4-b]pyridine-5,7-diones 13a-c prepared by reactions of 5-aminopyrazoles (8e-g) with methyl 1-methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carboxylate (11a) followed by the Gould/Jacobs reaction. 1-Methyl-4-methylthio-2,5-dioxo-1H-pyrrole-3-carbonitrile smoothly reacted with 2-aminobenzimidazoles to give the corresponding 5-amino-3-methyl-1H-pyrrolo[3′4′:4,5]pyrimido[1,2-a]benzimidazole-1,3(2H)-diones 16a-e , which were readily converted to the desired 12-aminopyridazino[4′,5′:4,5]pyrimido-[1,2-a]benzimidazole-1,4(2H,3H)-diones 17a-e in good yields. Other pyridazinopyrimidine derivatives were also obtained by the reaction of the corresponding 2-aminoheterocycles with the maleimide in good yields. Substituted anilines reacted 11b in refluxing methanol to give the corresponding methyl 4-phenylamino-1-methyl-2,5-dioxo-1H-pyrrole-3-carboxylates 25a-e which were converted in good yields to 2-methylpyrrolo[3,4-b]quinoline derivatives 26a-e by heating in diphenyl ether. Reaction of 26a-c with hydrazine hydrate gave 10-hydroxypyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 27a-e in good yields. The desired 10-aminopyridazino[4,5-b]pyridazine-1,4(2H,3H)-diones 30a-e were obtained in good yields by the chlorination of 4a-e with phosphorus oxychloride followed by aminolysis with 28% ammonium hydroxide. Some pyridazino[4,5-a][2.2.3]cyclazine-1,4(2H,3H)-diones 37a,b as luminescent compounds were synthesized via several steps from indolizine derivatives. The key intermediates, dimethyl 6-dimethylamino[2.2.3]cyclazine-1,2-dicarboxylates 34, 36 , were synthesized by the [8 + 2] cycloaddition reaction of the corresponding 7-dimethylaminoindolizines 33, 35 with dimethyl acetylenedicarboxylate in the presence of Pd-C in refluxing toluene. Some were found to be more efficient than luminol in light production. 4-Amino-3-methylsufonyl-1-phenyl-1H-pyrazolo[4′,3′:5,6]pyrido[2,3-d]pyridazine-5,8(6H,7H)-dione (7r) , 10-hydroxypyridazino[4,5-b]-quinoline-1,4(2H,3H)-diones 27a-e , and 10-aminopyridazino[4,5-b]quinoline-1,4(2H,3H)-diones 30a-e showed the greatest chemiluminescence intensity in the presence of hydrogen peroxide peroxidase in a solution of phosphate buffer at pH 8.0.  相似文献   

6.
Makamba H  Huang JW  Chen HH  Chen SH 《Electrophoresis》2008,29(12):2458-2465
We report on the photopatterning of single carbon nanotube composites with soft hydrogel polymers in glass microchannels. Since the hydrogels by themselves are able to withstand liquid flow within the microchannels, we covalently combined them with single-walled carbon nanotubes to impart mechanical strength. We attempted this approach by patterning the gels within the microchannels without prior surface modifications. Our results show that the 1-cm nanocomposite hydrogels are far stronger than the free hydrogels. Moreover, the nanocomposites were able to concentrate and separate proteins within a 1.5-cm distance using gel-free buffers. The separation cannot only be tuned by changing the running buffer; the lack of gels in the running buffer reduces the chance of channel blockage and thus the lifetime of the device is prolonged. The usefulness of the patterned nanocomposites may be extended by a wide selection of nanocomposite properties and monomers to find a broad range of applications in lab-on-chip technology.  相似文献   

7.
Ruthenium oxide was coated on multiwalled carbon nanotubes (MWCNTs) to obtain nanocomposite electrode which has a good response to the pH. To synthesize this electrode, gold and cobalt were coated on a stainless steel 304 substrates, respectively, and then, vertically aligned carbon nanotubes were grown on the prepared substrates by chemical vapor deposition. Gold reduced activity of the stainless steel, while cobalt served as a catalyst for growth of the carbon nanotube. Ruthenium oxide was then coated on MWCNTs via sol–gel method. At last, different techniques were used to characterize the properties of synthesized electrode including scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction, and cyclic voltammetry. SEM results showed that the length of the carbon nanotubes varied with reaction time, and in this research, it was maintained around 9 μm with a diameter about 100 nm. Electrochemical analysis revealed that optimum sol concentration and heat treatment temperature to meet the best pH sensing response were 0.1 M RuCl3 sol and 200 °C, respectively. Moreover, the obtained electrode represented a linear and near-Nernstian response (about ?63 mV/pH) throughout the whole pH range (2–12) of Britton–Robinson buffer solutions.  相似文献   

8.
化学发光免疫分析法具有高灵敏度、快速、简便、无放射性污染等优点,因此越来越受到人们的关注.近年来,国外有不少文献报道了化学发光免疫分析的研究,同时研制高效,易于标识生物大分子(抗体,核酸)的化学发光探针又是本方法的关键之所在.因此本文通过对双吖啶分子结构的改造合成了一种新型的化学发光探针:10,10'-二烯丙基-3,3'-二氨基-9,9'双吖啶,通过红外,紫外,元素分析等方法对其进行了表征,并研究了该探针与甲肝抗原的标识情况.  相似文献   

9.
Research on Chemical Intermediates - A sensitive electrochemical sensor has been developed based on reduced graphene oxide/Co3O4 (rGO/Co3O4) nanocomposites (NCs) synthesized by a facile...  相似文献   

10.
Polymers were prepared by the condensation of 2, 4-dihydroxybenzaldehydeoxime (2, 4-DBO) and formaldehyde (F) in the presence of oxalic acid as catalyst with varying molar ratios of reacting monomers. Polymers were characterized by their IR spectra, elemental analyses, TGA and Mn as determined by vapour pressure osmometry as well as by non-aqueous conductometric titrations. Viscosity measurements of the solutions of polymer samples were carried out in dimethylformamide. Chelation ion-exchange properties have also been studied employing the batch equilibration method. This method involved the measurement of distribution of a given metal between the polymer sample and a solution containing metal ions. The study was carried out over a wide pH range and in media of various ionic strengths. The polymer showed a higher selectivity for UO 2 2+ and Fe3+ ions than for Cu2+, Ni2+, Co2+ and Mn2+ ions.  相似文献   

11.
Large-scale and highly oriented single-crystalline hexagonal Cu(2)O nanotube arrays have been successfully synthesized using a two-step solution approach, which involves the electrodeposition of oriented Cu(2)O nanorods and a subsequent dissolution technique along the c axis to form a tubular structure. Herein, NH(4)Cl was found to be an effectual additive, and it can successfully realize the dissolution process of Cu(2)O from nanorods to nanotubes. The dissolution mechanism of Cu(2)O from nanorods to nanotubes was illustrated in detail. These prepared Cu(2)O nanotube arrays were characterized by SEM, EDS, XRD, XPS, and TEM. The photoluminescence (PL) spectrum of Cu(2)O nanotube arrays was also measured, and it shows there is a greater fraction of copper or oxygen vacancies in these prepared Cu(2)O nanotubes. Finally, the applications of Cu(2)O nanotube arrays for gas sensors were investigated in this paper.  相似文献   

12.
The facile synthesis of the novel platinum nanoparticles/Eastman AQ55D/ruthenium(II) tris(bipyridine) (PtNPs/AQ/Ru(bpy)3(2+)) colloidal material for ultrasensitive ECL solid-state sensors was reported for the first time. The cation ion-exchanger AQ was used not only to immobilize ECL active species Ru(bpy)3(2+) but also as the dispersant of PtNPs. Colloidal characterization was accomplished by transmission electron microscopy (TEM), X-ray photoelectron spectrum (XPS), and UV-vis spectroscopy. Directly coating the as-prepared colloid on the surface of a glassy carbon electrode produces an electrochemiluminescence (ECL) sensor. The electronic conductivity and electroactivity of PtNPs in composite film made the sensor exhibit faster electron transfer, higher ECL intensity of Ru(bpy)3(2+), and a shorter equilibration time than Ru(bpy)3(2+) immobilized in pure AQ film. Furthermore, it was demonstrated that the combination of PtNPs and permselective cation exchanger made the sensor exhibite excellent ECL behavior and stability and a very low limit of detection (1 x 10(-15) M) of tripropylamine with application prospects in bioanalysis. This method was very simple, effective, and low cost.  相似文献   

13.
碳纳米管/聚苯胺复合材料因其独特的电磁学、热力学和机械性能,在很多领域具有潜在应用价值.本文作者对近年来该复合材料的制备方法、性能及应用方面的研究进展进行了综述.  相似文献   

14.
TiO2 array film fabricated by potentiostatic anodization of titanium is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge–discharge measurements. The XRD results indicated that the TiO2 array is amorphous, and after calcination at 500 °C, it has the anatase form. The pore size and wall thickness of TiO2 nanotube arrays synthesized at different anodization voltages are highly dependent on the applied voltage. The electrochemical performance of the prepared TiO2 nanotube array as an electrode material for lithium batteries was evaluated by galvanostatic charge–discharge measurement. The sample prepared at 20 V shows good cyclability but low discharge capacity of 180 mA h cm−3, while the sample prepared at 80 V has the highest discharge capacity of 340 mA h cm−3.  相似文献   

15.
Anatase TiO2 nanotube was doped with different contents of Sn (3, 5, and 7 at.%) through sol-gel method and subsequent hydrothermal process. X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), and Hall effect measurement are utilized to characterize the structures, components, chemical environments, morphologies, specific areas, and electronic conductivities of the samples. The investigation in cycling performances demonstrates that 5 at.% Sn-doped TiO2 nanotube exhibits the best cycling stability, with specific capacity of 386 mAh g?1 and coulombic efficiency of 99.2 % after 50 cycles at 0.1 C, much higher than those of the other Sn-doped samples and pristine TiO2 nanotube. The improved electrochemical performances of Sn-doped TiO2 nanotube are attributed to the increase of electronic conductivity and therefore enhance the reversible capacity of the material.  相似文献   

16.
The sol-gel technique with a microwave irradiation was used to synthesize ZrO2 and Cu/ZrO2 solids at various pH values and hydrolysis catalysts. Microwave irradiation induces ZrO2 tetragonal phase formation at almost any pH. The copper was bonded through oxygen bonds to the zirconia lattice. The introduction of copper favored the support acidity.  相似文献   

17.
Carbon nanotube (CNT) Buckypapers can be infused with resin and easily incorporated into conventional fiber reinforced composites. In this paper, we propose to use Buckypaper (BP) as a new measuring method to determine the glass transition temperature of polymeric composites. The CNT-only BP was fabricated by spray-vacuum filtration method with monodispersion of multi-wall carbon nanotubes, and then co-cured with polymeric composites. After manufacturing, the glass transition temperature of polymeric composites could be obtained from the relationship between resistance and temperature of BP during the dynamic heating process. Experimental results show that the glass transition temperature of composite samples A and B monitored by BP sensors were 127 °C and 180 °C, while such temperatures obtained from a dynamical mechanical analyzer (DMA) were 128 °C and 184 °C respectively. This paper not only reveals the ability of BP as a sensor for monitoring the glass transition temperature of composite but also provides a new way to understand the glass transition phenomenon of composite.  相似文献   

18.
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)32+ encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)32+ to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)32+ was grown through the St?ber method. Highly luminescent Ru(bpy)32+ serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)32+ is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)32+ co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.  相似文献   

19.
Carbon nanotube/cobalt oxide core-shell one-dimensional nanostructures were prepared via a hydrothermal synthesis method, in which nanosize cobalt oxide crystals were homogeneously coated on the surface of carbon nanotubes. The morphologies and crystal structures of the as-prepared core-shell nanocomposites were analysed by X-ray diffraction, field emission gun scanning electron microscopy, and transmission electron microscopy. When applied as anodes in lithium-ion cells, carbon nanotube/cobalt oxide core-shell nanostructures exhibited an initial lithium storage capacity of 1250 mAh/g and a stable capacity of 530 mAh/g over 100 cycles. The good electrochemical performance could be attributed to the nanocrystalline cobalt oxide and the unique core-shell one-dimensional nanostructures.  相似文献   

20.
Research on Chemical Intermediates - Ternary oxide powders based on titania, zirconia and silica have been synthesized by the sol–gel method. The characterization of the powders was performed...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号