首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fully ionized L-mode tokamak plasmas in the fully collisional (Pfirsch-Schlüter) and in the low-collisional (banana) nonlinear transport regimes are analyzed. We derive the expressions for particles and heat losses together with the steady-state particle distribution functions in the several collisional transport regimes. The validity of the nonlinear closure equations, previously derived, has been indirectly tested by checking that the obtained particle distribution functions are indeed solutions of the nonlinear, steady-state, Vlasov-Landau gyro-kinetic equations. A quite encouraging result is the fact that, for L-mode tokamak plasmas a dissymmetry appears between the ion and electron transport coefficients: the latter submits to a nonlinear correction, which makes the radial electron coefficients much larger than the former. In particular we show that when the L-mode JET plasma is out of the linear region, the Pfirsch-Schlüter electron transport coefficients are corrected by an amplification factor, which may reach values of order 102. Such a correction is absent for ions. On the contrary, in the banana regime, the ion transport coefficients are increased by a factor 2 and the nonlinear corrections for electrons are negligible. These results are in line with experiments.  相似文献   

2.
Structures of Strong Shock Waves in Dense Plasmas   总被引:1,自引:0,他引:1       下载免费PDF全文
Structures of strong shock waves in dense plasmas are investigated via the steady-state Navier-Stokes equations and Poisson equation. The structures from nuid simulation agree with the ones from kinetic simulation. The effects of the transport coeffcients on the structures are analysed. The enhancements of the electronic heat conduction and ionic viscosity both will broaden the width of the shock fronts, and decrease the electric fields in the fronts.  相似文献   

3.
临近空间高超声速飞行器流场蕴含着复杂的非线性流动机理与丰富的热化学非平衡流动现象, 基于Newton摩擦定律和Fourier热传导定律的Navier-Stokes(N-S)方程不足以描述高超声速飞行器从连续流到稀薄流的多尺度非平衡现象。非线性耦合本构关系(nonlinear coupled constitutive relations, NCCR)作为一种全新的本构方程体系, 在严格满足热力学熵条件的基础上, 巧妙地构建了应力与热流的非线性表达形式。然而, NCCR方程的强非线性耦合特性是求解过程的一大难题。为了克服这一技术瓶颈, 提出了混合迭代算法, 为实现NCCR方程的高效稳定求解提供了坚实的理论基础。在该理论研究的基础上, 考虑到原始NCCR方程对热通量演化方程的简化处理, 降低了方程的计算精度, 提出了改进的NCCR+方程。该方程在强激波压缩区域和膨胀区域表现出比传统NCCR方程更高的计算精度与更强的非平衡流动模拟能力。同时, 为了解决临近空间高超声速空气动力学的多尺度与多物理效应耦合难题, 提出了NCCR与转动非平衡的耦合计算模型, 拓展了NCCR方程在双原子气体中的模拟能力。为了揭示稀薄气体效应与真实气体效应的耦合作用机理, 进一步建立了NCCR与热化学反应的耦合计算方法。大量研究结果表明, 考虑多物理效应的NCCR方程在低Kn下能够恢复到与N-S方程一致的解。随着Kn的增加, 流场的非平衡程度逐渐增强, 其结果与N-S方程差异显著, 而与DSMC方法计算结果和实验数据具有更好的一致性。   相似文献   

4.
The question of how nonlinear interactions redistribute the energy of fluctuations across available degrees of freedom is of fundamental importance in the study of turbulence and transport in magnetized weakly collisional plasmas, ranging from space settings to fusion devices. In this Letter, we present a theory for the dual cascade found in such plasmas, which predicts a range of new behavior that distinguishes this cascade from that of neutral fluid turbulence. These phenomena are explained in terms of the constrained nature of spectral transfer in nonlinear gyrokinetics. Accompanying this theory are the first observations of these phenomena, obtained via direct numerical simulations using the gyrokinetic code AstroGK. The basic mechanisms that are found provide a framework for understanding the turbulent energy transfer that couples scales both locally and nonlocally.  相似文献   

5.
6.
The paper aims to clarify the modelling results concerning the heat transfer and fluid flow in a radio‐frequency plasma torch with argon at atmospheric pressure. Fluid numerical simulation requires the coupling of magnetohydrodynamics (MHD) and thermal phenomena. This model combines Navier–Stokes equations with the Maxwell's equations for compressible fluid and electromagnetic phenomena successively. A numerical formulation based on the finite element method is used. In this study, fluid flow and temperature equations are simultaneously solved (direct method, instead of using the indirect method) using a finite elements method (FEM) for optically thin argon plasmas under the assumptions of local thermodynamic equilibrium (LTE) and laminar flow. Appropriate boundary conditions are given, and nonlinear parameters such as the thermal and electrical conductivity of the gas and input power used in the simulation are detailed. We have found that the source of power is located on the torch wall in this type of inductive discharge. The center can be heated by conduction and convection via electromagnetic phenomena (power loss and Lorentz force). (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
This review is concerned with the two most important transport phenomena in involving slow ions in gases, namely their drift and diffusion in an externally applied electric field. The energy range of interest extends from thermal values at low temperatures up to about 10 eV. The transport phenomena are first discussed in physical terms, and experimental techniques for measuring ionic drift velocities and diffusion coefficients are then described. Brief coverage is given to ionic transport theory up to the time of Wannier's landmark contributions in 1951–1952; later theoretical developments are treated in more detail. Special emphasis is placed on aspects of modern theory that permit the determination of interaction potentials and collision frequencies for momentum transfer from experimental transport data. The review ends with a discussion of several applications of transport data to ionospheric problems.  相似文献   

8.
Thermodynamics of processes in continuous matter has found several treatments: (1) classical thermodynamics of irreversible processes, (2) the nonlinear field theory of mechanics with the incorporation of thermodynamic aspects, (3) the new entropyfree thermodynamics of processes. An important feature of the last theory is the fundamental inequality. It provides a basis for the formulation of constitutive equations, which are discussed for simple thermodynamic fluid materials. Classical thermodynamics of irreversible processes results as a well defined special case with a modification that has been overlooked previously. It is shown by an example that this modification which differentiates between a dynamic and a thermostatic temperature is necessary in order to make classical thermodynamics of irreversible processes consistent.  相似文献   

9.
The neoclassical theory of transport in magnetically confined plasmas is reviewed. The emphasis is laid on a set of relationships existing among the banana transport coefficients. The surface-averaged entropy production in such plasmas is evaluated. It is shown that neoclassical effects emerge from the entropy production due to parallel transport processes. The Pfirsch-Schlüter effect can be clearly interpreted as due to spatial fluctuations of parallel fluxes on a magnetic surface: the corresponding entropy production is the measure of these fluctuations. The banana fluxes can be formulated in a quasithermodynamic form in which the average entropy production is a bilinear form in the parallel fluxes and the conjugate generalized stresses. A formulation as a quadratic form in the thermodynamic forces is also possible, but leads to anomalies, which are discussed in some detail.  相似文献   

10.
A theory of nonlinear response is developed for studying nonlinear phenomena and nonlinear transport processes in nonideal Coulomb systems. Temporal plasma echo and transformation of waves in a nonideal Coulomb system are studied on the basis of the theory of nonlinear response to mechanical perturbations. General constraints imposed on nonlinear response functions are considered, and the model for determining quadratic response functions is formulated. The conditions for the emergence of temporal plasma echo and wave transformation are determined. It is shown that these nonlinear effects in a nonideal plasma can be initiated by ultrashort field pulses. A theory of transport is developed for determining the Burnett transport properties of a nonideal multielement plasma. A procedure is proposed for comparing the phenomenological conservation equations for a charged continuous medium and equations of motion for the operators of corresponding dynamic variables. The Mori algorithm is used for deriving the equations of motion for operators of dynamic variables in the form of generalized Langevin equations. The linearized Burnett approximation is considered in detail. The properties of the matrices of coefficients of higher-order derivatives in the system of conservation equations in the linearized Burnett approximation, which are important for hydrodynamic applications, are discussed. Various versions of the theory of nonlinear response are compared.  相似文献   

11.
Effects of magnetic and electric fields on transport phenomena in dilute polyatomic gases are reviewed within the framework of first order Enskog theory. The established technique of approximate operator inversion is used to give first order approximations of the transport coefficients. Instead of the customary expansion of polarization into orthogonal polynomials a more general treatment is chosen here so as to accomodate recent experimental observations. The polarizations produced by macroscopic fluxes are assumed to be eigenfunctions of the collision operator within the subspace of functions anisotropic in angular momentum. The formalism is extended to mixtures in a way to let the final expressions assume the same form as for pure gases. The obtained transport coefficients obey several symmetry relations and inequalities. Additional inequalities are now also derived for the matrix describing the saturated field effects.  相似文献   

12.
刘三秋  刘勇  李晓卿 《中国物理 B》2011,20(1):15203-015203
This paper analytically investigates the nonlinear behaviour of transverse plasmons in pair plasmas on the basis of the nonlinear governing equations obtained from Vlasov--Maxwell equations. It shows that high frequency transverse plasmons are modulationally unstable with respect to the uniform state of the pair plasma. Such an instability would cause wave field collapse into a localized region. During the collapse process, ponderomotive expulsion is greatly enhanced for the increase of wave field strength, leading to the formation of localized density cavitons which are significant for the future experimental research in the interaction between high frequency electromagnetic waves and pair plasmas.  相似文献   

13.
14.
本文利用非平衡热力学理论分析了微滤中的透膜热质耦合传递现象,建立了相应的物理数学模型,在此基础上,探讨了各种因素对透膜通量及热流束的影响,结果表明:质量流与膜两侧的压差呈正比关系,而与膜温度呈指数关系;热流不仅与膜温度有关,还与膜两侧的压差和温差有关;在膜温度一定时,热流与膜两侧的压差和温差均呈线性关系。  相似文献   

15.
A theory of time-dependent nonlinear dispersive equations of the Schr?dinger or Gross-Pitaevskii and Hartree type is developed. The short, intermediate and large time behavior is found, by deriving nonlinear master equations (NLME), governing the evolution of the mode powers, and by a novel multitime scale analysis of these equations. The scattering theory is developed and coherent resonance phenomena and associated lifetimes are derived. Applications include Bose-Einstein condensate large time dynamics and nonlinear optical systems. The theory reveals a nonlinear transition phenomenon, "selection of the ground state," and NLME predicts the decay of excited state, with half its energy transferred to the ground state and half to radiation modes. Our results predict the recent experimental observations of Mandelik et al. in nonlinear optical waveguides.  相似文献   

16.
The paper is devoted to the theory of thermal fluctuations in nonlinear macroscopic systems and to the derivation of variational principles of nonlinear nonequilibrium thermodynamics. In the first part of the paper rigorous universal fluctuation-dissipation relations for nonlinear classical and quantum systems, subjected to dynamic as well as thermodynamic perturbations, are derived and analyzed. General expressions for dissipative fluxes and nonlinear transfer coefficients with the help of fluctuation cumulants are found. The canonical structure of nonlinear evolution equations of macrovariables is derived and the rule of introducing langevinian random forces into these equations, in accordance with fluctuation-dissipation relations. A Markovian theory of fluctuations in a stationary nonequilibrium state is constructed.  相似文献   

17.
Zonal flows are universal phenomena in nature and have attracted interse interest in the magnetic fusion plasma physics community in recent years. The active studies in this field are aimed at an understanding of nonlinear physics processes responsible for coherent structure formation and for anomalous transport in plasmas.  相似文献   

18.
The influence of fluxes of intrinsic nonequilibrium semiconductor defects on impurity diffusion in a nonuniform temperature field is considered in the framework of the phenomenological theory of irreversible processes. The mass transfer coefficient defined as the ratio of the concentrations of nonequilibrium and equilibrium defects is introduced to take the excessive concentration of nonequilibrium defects into account. The introduction of this coefficient into equations for matter and heat fluxes makes it possible to express the parameters of the process of thermal diffusion (the diffusion coefficient and the heat of transport) as a time-dependent function of the excessive concentration of intrinsic nonequilibrium semiconductor defects.  相似文献   

19.
The relaxation of magnetically confined plasmas in a toroidal geometry is analyzed. From the equations for the Hermitian moments, we show how the system relaxes towards the mechanical equilibrium. In the space of the parallel generalized frictions, after fast transients, the evolution of collisional magnetically confined plasmas is such that the projections of the evolution equations for the parallel generalized frictions and the shortest path on the Hermitian moments coincide. For spatially‐extended systems, a similar result is valid for the evolution of the thermodynamic mode (i.e., the mode with wave‐number k = 0 ). The expression for the affine connection of the space covered by the generalized frictions, close to mechanical equilibria, is also obtained. The knowledge of the components of the affine connection is a fundamental prerequisite for the construction of the (nonlinear) closure theory on transport processes (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
获得覆盖较宽温度和压力范围内的等离子体热力学和输运性质是开展等离子体传热和流动过程数值模拟的必要条件.本文通过联立Saha方程、道尔顿分压定律以及电荷准中性条件求解等离子体组分;采用理想气体动力学理论计算等离子体热力学性质;基于Chapman-Enskog方法求解等离子体输运性质.利用上述方法计算了压力为0.1, 1.0和10.0 atm (1 atm=101325 Pa),电子温度在300—30000 K范围内,非局域热力学平衡(电子温度不等于重粒子温度)条件下氩-氮等离子体的热力学和输运性质.结果表明压力和非平衡度会影响等离子体中各化学反应过程,从而对氩-氮等离子体的热力学及输运性质有较大的影响.在局域热力学平衡条件下,计算获得的氩-氮等离子体输运性质和文献报道的数据符合良好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号